
Concurrent Immediate Reference Counting

JAEHWANG JUNG, KAIST, Korea
JEONGHYEON KIM, KAIST, Korea
MATTHEW J. PARKINSON, Azure Research, Microsoft, United Kingdom

JEEHOON KANG, KAIST, Korea

Memory management for optimistic concurrency in unmanaged programming languages is challenging. Safe

memory reclamation (SMR) algorithms help address this, but they are difficult to use correctly. Automatic

reference counting provides a simpler interface, but it has been less efficient than SMR algorithms. Recently,

there has been a push to apply the optimizations used in garbage collectors for managed languages to elide

reference count updates from local references. Notably, Fast Reference Counter, OrcGC, and Concurrent

Deferred Reference Counting use SMR algorithms to protect local references by deferring decrements or

reclamation. While they show a significant performance improvement, their use of deferral may result

in growing memory usage due to slow reclamation of linked structures, and suboptimal performance in

update-heavy workloads.

We present Concurrent Immediate Reference Counting (CIRC), a new combination of SMR algorithms with

reference counting. CIRC employs deferral like other modern methods, but it avoids their problems with

novel algorithms for (1) immediately reclaiming linked structures recursively by tracking the reachability of

each object, and (2) applying decrements immediately and deferring only the reclamation. Our experiments

show that CIRC’s memory usage does not grow over time and is only slightly higher than the underlying

SMR. Moreover, CIRC further narrows the performance gap between the underlying SMR, positioning it

as a promising solution to safe automatic memory management for highly concurrent data structures in

unmanaged languages.

CCS Concepts: • Computing methodologies→ Concurrent algorithms; • Software and its engineering
→ Garbage collection.

Additional Key Words and Phrases: automatic memory reclamation, reference counting, concurrent data

structures

ACM Reference Format:
Jaehwang Jung, Jeonghyeon Kim, Matthew J. Parkinson, and Jeehoon Kang. 2024. Concurrent Immediate

Reference Counting. Proc. ACM Program. Lang. 8, PLDI, Article 153 (June 2024), 40 pages. https://doi.org/10.
1145/3656383

1 INTRODUCTION
The performance and scalability of modern software systems often depend on highly concurrent

non-blocking data structures. These data structures can optimistically access memory, which makes

manual memory management challenging: knowing when memory will no longer be accessed and

is safe to reuse is difficult.

Authors’ addresses: Jaehwang Jung, KAIST, Daejeon, Korea, jaehwang.jung@kaist.ac.kr; Jeonghyeon Kim, KAIST, Daejeon,

Korea, jeonghyeon.kim@kaist.ac.kr; Matthew J. Parkinson, Azure Research, Microsoft, Cambridge, United Kingdom,

mattpark@microsoft.com; Jeehoon Kang, jeehoon.kang@kaist.ac.kr, KAIST, Daejeon, Korea.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/6-ART153

https://doi.org/10.1145/3656383

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 153. Publication date: June 2024.

HTTPS://ORCID.ORG/0000-0001-6099-2644
HTTPS://ORCID.ORG/0009-0000-7070-3578
HTTPS://ORCID.ORG/0009-0004-3937-1260
HTTPS://ORCID.ORG/0000-0002-2115-0871
https://doi.org/10.1145/3656383
https://doi.org/10.1145/3656383
https://orcid.org/0000-0001-6099-2644
https://orcid.org/0009-0000-7070-3578
https://orcid.org/0009-0004-3937-1260
https://orcid.org/0000-0002-2115-0871
https://doi.org/10.1145/3656383

153:2 Jaehwang Jung, Jeonghyeon Kim, Matthew J. Parkinson, and Jeehoon Kang

To address this challenge, algorithms for safe memory reclamation (SMR) have been developed for

non-blocking data structures. There are many forms of SMR, such as hazard pointers (HP) [Michael

2002b, 2004], pass-the-buck [Herlihy et al. 2005], read-copy-update (RCU) [McKenney and Slingwine

1998], and epoch-based reclamation (EBR) [Fraser 2004]. The interfaces to these systems require

a deep understanding of both the client data structure and the SMR algorithm. This makes their

correct usage challenging. In fact, Anderson et al. [2021] report several usage bugs in the benchmark

suite of several SMR algorithms that lead to use-after-free and memory leaks.

An alternative to SMR is automatic reference counting. With C++20, concurrent reference

counting is exposed in the standard library as atomic<shared_ptr> and provides a considerably

easier programming model. Unfortunately, in the presence of optimistic memory access getting the

implementation correct and efficient is tricky. Standard implementations typically involve either

locks or split reference counts [Williams 2019]. These implementations negate many of the scaling

benefits of the non-blocking data structures.

On the other hand, developments in garbage collectors (GCs) for managed languages have shown

that reference counting can be fast. A key optimization in high-performance reference counting

GC is to avoid eagerly counting the references from the local variables (i.e., stacks and registers)

and let the collector check them during the collection routine. There are two seminal approaches

to this optimization. In Deutsch and Bobrow [1976]’s method, objects that reach the zero count

(i.e., no references from other heap objects) are first added to the zero-count table (ZCT), deferring
their reclamation. The GC occasionally pauses all the other threads, scans the local variables to

temporarily mark objects referenced by them (e.g., by incrementing), and reclaims all unmarked

objects in ZCT. In Bacon et al. [2001]’s method, decrements are deferred by logging them in a

thread-local buffer.
1
The GC pauses each thread one by one to fetch their logs and scan their local

variables. Then the GC temporarily increments the referents of scanned local variables and executes

the decrements logged sufficiently long ago, reclaiming the objects that reach zero count.

Recently, there has been a push to apply such optimizations to concurrent reference counting for

unmanaged languages. Modern algorithms such as Fast Reference Counter (FRC) [Tripp et al. 2018],

OrcGC [Correia et al. 2021], and Concurrent Deferred Reference Counting (CDRC) [Anderson et al.

2021, 2022] use SMR to protect uncounted local references, replacing the GC’s role of scanning

local references. Specifically, OrcGC delays the reclamation of the zero-count object protected by

hazard pointer, following Deutsch and Bobrow [1976]; FRC delays decrements and temporarily

increments objects protected by hazard pointer, following Bacon et al. [2001]; and CDRC generalizes

the deferred decrement approach to other SMRs by delaying decrements to an object until it is no

longer protected by the SMR.

1.1 Problems of Deferral-Based Methods
SMR-based deferral has enabled efficient concurrent reference counting in unmanaged languages.

However, it is also a weakness.

Slow progress of reclamation. The delay between the release of the last reference and reclamation

can lead to the algorithm not being able to keep up with the application’s rate of creating garbage.

For instance, Fig. 1a shows that the memory usage of a linked-list-based concurrent queue using

CDRC grows over time. To see why this occurs, consider dequeuing a series of nodes node1 to

node𝑛 from the queue, where each node𝑖 references node𝑖+1 (Fig. 1b). Only after node𝑖 is reclaimed

can node𝑖+1 be considered for reclamation. But reclaiming node𝑖+1 requires checking the protected

local references. Since this process is executed in batches by the underlying SMR, the rate of

collection may fall behind the rate of dequeuing, resulting in a buildup of garbage backlog. Other

1
To be precise, increments are deferred too. See §7 for details.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 153. Publication date: June 2024.

Concurrent Immediate Reference Counting 153:3

EBR CDRC-EBR CIRC-EBR

10 20 30 40 50 60
Time interval to run (seconds)

0

2

4

6

8

Av
g

m
em

or
y

us
ag

e
(G

iB
)

(a) Average memory usage for varying
running times.

node2node1

Head

Rc Rc …

node3

Rc

Rc
Local Local

(b) After the counted reference (Rc) from node𝑖 to
node𝑖+1 is destroyed, reclaiming node𝑖+1 requires
checking its Local references, delaying its reclamation.

Fig. 1. Slow reclamation in linked-list-based queue using CDRC.

modern reference counting methods face the same issue as they utilize some form of deferred

processing. For example, Correia et al. [2021] observed that the memory footprint of the lock-free

skiplist [Fraser 2004; Shavit et al. 2011] using OrcGC can be very large, because the multiple levels

of links increase the likelihood of forming garbage chains.

Several solutions exist, but they either compromise the performance or the safe interface. The

first straightforward solution is to eagerly attempt to execute the deferred tasks. For example,

OrcGC scans the entire hazard pointer slots whenever an object reaches zero count. However, this

incurs a big overhead. In fact, Anderson et al. [2021] report that OrcGC is consistently outperformed

by CDRC, more than twice slower in some cases. Our evaluation of a linked-list-based queue with

an eager variant of CDRC shows a similar increase in the overhead (Fig. 8a). And yet, this solution

does not completely fix the memory usage problem, as observed in OrcGC’s skiplist benchmark

and our queue benchmark (Fig. 8b).

The second solution employed by OrcGC, called poisoning, is to manually apply preemptive

decrements to the successors of garbage objects to eliminate the dependency between the recla-

mation of linked objects. For example, after dequeuing node𝑖 , it immediately decrements node𝑖+1.
However, for safety, the links from the poisoned objects must not be followed. This is done by

marking the links as poisoned when applying preemptive decrements, and restarting the operations

that encounter poisoned links. This not only disallows uninterrupted traversal of linked structures,

but also makes its application as difficult as manual SMR schemes. Specifically, programmers must

ensure that they poison only the detached objects in order to maintain the correctness of data

structure operations.

Finally, we believe the deferred decrement approaches (FRC and CDRC) can enable prompt

recursive reclamation by temporarily incrementing the protected local references and immediately

applying recursive decrements during the collection routine, similarly to the original algorithm by

Bacon et al. [2001].
2
However, this is not compatible with the fastest variants of CDRC, because

they are based on RCU/EBR-like SMR schemes that do not announce each local reference. They

instead use critical sections that protect all references inside it, which is the key factor to their

superior performance. Adding per-pointer protection would negate their performance advantage.

2
FRC does temporary increments, but does not immediately apply recursive decrements in the collection routine.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 153. Publication date: June 2024.

153:4 Jaehwang Jung, Jeonghyeon Kim, Matthew J. Parkinson, and Jeehoon Kang

Performance overhead of deferred decrement. CDRC may incur significant performance over-

head when the objects have many counted references and are updated frequently. Since CDRC

schedules a deferred task for each decrement, it creates a large number of deferred tasks in such

cases. Frequent scheduling of deferred tasks imposes a non-negligible burden on the underlying

SMR, as it increases the frequency of scanning local protections. In addition, it would also increase

global synchronization overhead if CDRC were implemented on top of real-world SMR implemen-

tations such as Folly’s HP and RCU [Meta 2023] and Crossbeam’s EBR [Crossbeam Developers

2023], because they use shared data structures to distribute the reclamation workload and to be

transparent [Nikolaev and Ravindran 2021], e.g., supporting dynamic (un)registration of threads.

1.2 Our Solution for Fast and Safe Recursive Reclamation
We present Concurrent Immediate Reference Counting (CIRC), a new combination of an SMR scheme

with reference counting. CIRC employs deferral like other modern methods, but it avoids their

problems without incurring significant overhead or resorting to an unsafe interface. In throughput,

CIRC generally outperforms CDRC and incurs almost none to modest overhead over the underlying

SMR. The key idea of CIRC is to track when each object was last reachable so that it can immediately

and recursively reclaim the objects that have been unreachable for a sufficiently long time. CIRC

realizes this idea in a safe interface and an efficient implementation, underpinned by two novel

algorithms.

First, CIRC automatically tracks reachability without inputs from the programmer. To do so, CIRC

divides the time into epochs [Bacon et al. 2001; Fraser 2004], and attaches the few-bit representation

of the epoch number to pointer fields and reference counts, which are updated along with pointer

writes and immediate decrements, respectively. The updates are done in a way that when an object

reaches the zero count, its reference count epoch is the one at which the object was last reachable.

Specifically, this reachability information is propagated through recursive decrements: in Fig. 1b, if

node𝑖 was dequeued long ago and is being destroyed now, node𝑖+1 could not have been accessed

through node𝑖 . This knowledge allows immediate recursive destruction of the node𝑖+1.
Second, CIRC follows the immediate decrement style (i.e., deferred reclamation) and handles

concurrency in a simple yet efficient way. Zero-count objects must be checked for local references,

but concurrency complicates the problem. If a zero-count object is incremented away from zero

and decremented back to zero while a collector is running concurrently, its destruction must be

canceled because there can be new local references missed by the collector. To detect such cases,

OrcGC uses an additional sequence number to track how many updates have been applied to the

reference count. Our approach is surprisingly simple: if an increment moves the count away from

zero, then it must apply a second increment. Thus, when the delayed destruction is processed, if the

reference count is still zero, then it must be safe to destruct the object. Otherwise, the destruction

is canceled, and the additional reference count is removed.

The combination of two key ideas in CIRC allows memory to be reclaimed considerably more

quickly than CDRC. Fig. 1a shows that CIRC’s memory usage is only slightly higher than the

underlying SMR, and more importantly is not growing with time. At the same time, CIRC performs

comparably to EBR in read-most workloads, and in the worst case of heavily contended workloads

with large amounts of reference count updates, CIRC performs within 35% of EBR. In addition, the

HP version of CIRC without recursive destruction shows up to 55% throughput improvement over

the CDRC’s counterpart thanks to the reduced number of deferred tasks.

The rest of the paper is structured as follows. §2 provides the background on SMR algorithms

and the basic structure of deferral-based concurrent reference counting algorithms. §3 shows how

to immediately apply decrements, and §4 presents the algorithm to allow immediately applying

recursive destruction. §5 extends CIRC with support for weak references to handle reference

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 153. Publication date: June 2024.

Concurrent Immediate Reference Counting 153:5

𝑛root 𝑛1 𝑛2

𝑇2: CAS(𝑛root, 𝑛1, 𝑛2); decrement(𝑛1); free(𝑛1)

𝑇1: new reference?

Fig. 2. The race between reference creation and reclamation. Thread 𝑇1 is attempting to get a reference to 𝑛1.
At the same time, thread 𝑇2 detaches 𝑛1, decrements it, and reclaims it.

cycles. §6 presents an experimental evaluation of CIRC against the underlying SMRs and CDRC. §7

discusses related work in detail and concludes with future work.

2 BACKGROUND
A naive implementation of reference counting does not work in non-blocking concurrent programs

because of the race between reference creation and reclamation. Consider the scenario illustrated

in Fig. 2, where two threads access a shared non-blocking concurrent linked list. The first thread

𝑇1 reads the root 𝑛root to obtain a reference to the first node 𝑛1. But just before 𝑇1 increments the

count of 𝑛1, another thread 𝑇2 unlinks 𝑛1 from 𝑛root, decrements the count, reaching 0, and thus

destructs and deallocates it. Then it is not safe for𝑇1 to increment 𝑛1 as it will lead to use-after-free.

Note that making the increment atomic, e.g., using the fetch-and-add (FAA) instruction, is not

enough for preventing this issue, because it stems from the fact that obtaining a pointer value and

incrementing the pointed object’s count are not atomic.

In this section, we review how the manual concurrent reclamation algorithms handle such

problems (§2.1) and the common aspects of the modern concurrent reference counting algorithms

for unmanaged languages that utilize the manual reclamation methods under the hood (§2.2).

2.1 Manual Concurrent Reclamation Schemes
Manual memory reclamation methods for non-blocking concurrency, often called safe memory
reclamation (SMR) schemes, require some manual effort to defer the reclamation until it is safe.

In particular, they provide an interface consisting of a function to protect a local reference from
the reclamation of its referent, and a function to retire a pointer, i.e., schedule its reclamation, so

that it can be reclaimed later when it is no longer protected. There are two classic approaches for

implementing this interface: pointer-based methods represented by hazard pointers (HP) [Michael

2004] and critical-section-based approaches represented by read-copy-update (RCU) [McKenney

and Slingwine 1998].

Hazard pointers. In HP, each thread owns hazard pointer slots in which they announce (store) a

pointer to protect. For example, in Fig. 2, 𝑇1 should write 𝑛1 to its hazard slot before accessing it.

On the other hand, 𝑇2 calls the retire() function with 𝑛1 after unlinking it from 𝑛root. The retire()
function occasionally triggers the reclamation procedure, which takes a pointer from the retired

pointer list, checks if it is protected by any of the hazard pointer slots, and if not, reclaims it.

Reclamation is usually done in batch (or incrementally) to amortize (or distribute) the cost of

scanning the protection slots.

One important subtlety in HP is that writing to a hazard slot itself does not guarantee the safety

of access. For example, in Fig. 2,𝑇2 may retire and reclaim 𝑛1 just before𝑇1 protects 𝑛1, leading to the

same race problem discussed above. To ensure safety, the protector should validate that the pointer
has not yet been retired. Since a pointer is retired only after it is detached (i.e., made unreachable)

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 153. Publication date: June 2024.

153:6 Jaehwang Jung, Jeonghyeon Kim, Matthew J. Parkinson, and Jeehoon Kang

from the data structure’s entrypoints, validation can be done by checking the reachability of the

object. For example, 𝑇1 should check that 𝑛root still points to 𝑛1 after writing to a hazard slot.

Read-copy-update. RCU provides protection based on critical sections. A critical section protects

all references that can be obtained inside it. More precisely, if a pointer had not been retired before

the beginning of a critical section, then it is protected in the said critical section. For example, in

Fig. 2, after 𝑇1 starts a critical section, it can freely traverse the list nodes even if some of them are

detached and retired while 𝑇1 is traversing.

RCU can be implemented with epoch-based technique [Fraser 2004], which maintains a mono-

tonically increasing epoch counter that represents time. When a thread enters a critical section, it

announces the current epoch. When an object is retired, the current epoch is recorded in the object.

A retired object can be reclaimed if its retirement epoch is smaller than the minimum epoch active

critical sections. Such algorithms are called epoch-based reclamation (EBR), and are usually the

fastest among the SMR schemes.

Difficulties in using manual schemes. While the manual schemes are more performant than

other methods such as traditional implementations of concurrent reference counting, they are

known to be difficult to use even for experienced programmers. Correctly applying them requires a

deep understanding of the client data structure, and sometimes non-trivial changes should be made.

For instance, manual methods require retiring all and only the objects that have been globally

detached from the data structure. This is difficult in data structures such as lock-free skiplists [Fraser

2004; Shavit et al. 2011] where a logically deleted node can be physically inserted back. To decide

the safety of retirement, the C++ and Rust implementations of lock-free skiplists we are aware

of incorporate manual reference counting alongside an SMR method. For another example, HP

requires validation and handling its failure, which is not compatible with many concurrent data

structures [Brown 2015]. Anderson et al. [2021] report usage bugs in the benchmark suite of several

manual schemes that lead to use-after-free and memory leaks.

2.2 Basics of Deferral-Based Concurrent Reference Counting
FRC [Tripp et al. 2018], OrcGC [Correia et al. 2021], CDRC [Anderson et al. 2021, 2022], and

our new algorithm CIRC use SMR schemes to implement efficient concurrent reference counting

with a safe interface. They share the same key idea: using the SMR to protect objects from being

reclaimed while incrementing them (Fig. 2), and exposing the SMR’s local reference protection

to allow short-lived accesses without updating reference counts. Algorithm 1 shows the interface

and implementations that are common to them in a pseudocode with a Rust-style ownership type

system. Our presentation largely follows the generalized version of CDRC [Anderson et al. 2022].

Preliminaries. Object<T> (line 1) represents objects of type T managed by reference counting.

It extends T with a count for strong (normal) references and another for weak references. (Weak

references are discussed in §5.) Rc<T> (line 4) is a smart pointer type for reference-counted pointer

to an object of type T, and Atomic<Rc<T>> (line 6) represents a mutable field that contains an Rc<T>.
A Snapshot<T> (line 8) is a local reference protected by the backend SMR scheme.

3
It consists of

the pointer value and a Guard that represent the per-pointer protection from the backend SMR,

provided by the generalized interface called acquire-defer (AD, lines 11 to 16).4 For example, a guard

in HP is a pointer to the hazard pointer slot, and in RCU it is the zero-sized unit type. To account for

3
The counterpart of Snapshot references is called PrivatePointer in FRC and orc_ptr in OrcGC.

4
This interface is originally called acquire-retire in Anderson et al. [2021, 2022], but we renamed it to avoid confusion with

the retire function SMR schemes. Also, the interface presented here is slightly simplified and generalized for scheduling

arbitrary deferred tasks.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 153. Publication date: June 2024.

Concurrent Immediate Reference Counting 153:7

Algorithm 1 Interface and implementation common to deferral-based concurrent reference count-

ing libraries. The parts that require algorithm-specific implementation are highlighted purple.

1: struct Object<T>
2: data: T
3: strong, weak: Atomic<uint>
4: struct Rc<T>, Weak<T>
5: ptr: Object<T>*
6: struct Atomic<Rc<T>>, Atomic<Weak<T>>
7: inner: Atomic<Object<T>*>
8: struct Snapshot<T>
9: ptr: Object<T>*
10: guard: Guard

11: function AD::begin_CS()
12: function AD::end_CS()
13: function AD::acquire<T>(src: &Atomic<Rc<T>>)

→ (Object<T>*, Guard)
14: function AD::acquire_raw<T>(ptr: Object<T>*)

→ Guard
15: function AD::release(guard: Guard)
16: function AD::defer<T>(ptr: T*, fn: T*→ ())

17: global strongAD, weakAD: AD

21: function Atomic<Rc<T>>::get_snapshot(&self)→ Snapshot<T>
22: (ptr, guard)← strongAD.acquire(&self.inner)
23: return Snapshot { ptr, guard }
24: function Rc<T>::from_snapshot(s: &Snapshot<T>)→ Rc<T>
25: if s.ptr ≠ null then increment s.ptr
26: return Rc { ptr: s.ptr }
27: function Atomic<Rc<T>>::load(&self)→ Rc<T>
28: (ptr, guard)← strongAD.acquire(&self.inner)
29: if ptr ≠ null then increment ptr
30: strongAD.release(guard)
31: return Rc { ptr }
32: function Atomic<Rc<T>>::cas(&self, expected: Object<T>*, desired: Rc<T>)

→ Result<Rc<T>, (Object<T>*, Rc<T>)>
33: match self.inner.cas(expected, desired.ptr)
34: case OK(_) then forget(desired); return Ok(Rc { ptr: expected })
35: case Err(cur) then return Err((cur, desired))
36: function Atomic<Rc<T>>::store(&self, desired: Rc<T>)
37: old← self.inner.swap(desired.ptr)
38: if old ≠ null then decrement old
39: function Atomic<Rc<T>>::drop(&mut self)
40: ptr← self.inner.load()
41: if ptr ≠ null then decrement old

RCU-style protection, acquire-defer provides the begin_CS and end_CS functions to manage critical

sections. Critical sections must be active throughout a client operation, and especially Snapshots
must not escape from the critical section they are created in. For HP, critical section functions are

no-op. We collectively call the per-pointer protection and the critical section snapshot protections.
The acquire function creates a guard and protects the pointer loaded from src. For HP, it obtains

a hazard slot, announces the loaded pointer, and validates the protection by checking that src has
not changed (if changed, repeat). This validation is always safe in the context of reference counting

(unlike in HP), because a pointer loaded from Atomic<Rc> is backed by a reference count, which

ensures that the object is live. This also means that a Snapshot can be acquired directly from an

Rc without validation, using the acquire_raw function. For RCU, acquire does nothing other than

loading the pointer. A guard is destroyed by the release function.
The defer function (renamed from “retire” to avoid confusion) schedules a task associated with

ptr. A deferred task is executed after all the snapshot protections acquired before its scheduling are

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 153. Publication date: June 2024.

153:8 Jaehwang Jung, Jeonghyeon Kim, Matthew J. Parkinson, and Jeehoon Kang

Algorithm 2 Immediate decrement in CIRC without weak references

51: function Object<T>::decrement_strong(&self)
52: if self.strong.faa(-1) = 1 then // No more counted references. Now check the snapshots.
53: strongAD.defer(self, try_reclaim)
54: Periodically trigger execution of deferred tasks

55: // Caller must have acquired a snapshot protection to the object.
56: function Object<T>::increment_strong(&self)
57: if self.strong.faa(1) = 0 then // If true, it created a permission to schedule try_reclaim again.
58: self.strong.faa(1) // The actual increment.
59: function try_reclaim<T>(ptr: Object<T>*)
60: if (*ptr).strong.load() = 0 then // No new Rc is created, and thus there is no new snapshot.
61: destruct(&(*ptr).data); free(ptr)
62: else
63: (*ptr).decrement_strong()

released. CDRC uses this function to schedule decrements, while OrcGC and CIRC schedule the

reclamation of zero-count objects.

High-level implementation. Atomic<Rc>::get_snapshot (line 21) is a thin wrapper around acquire.
Given a snapshot, Rc::from_snapshot (line 24) increments the count, the implementation of which

differs across the different reference counting algorithms. For example, CDRC simply increments

the count with FAA, while it is more involved in CIRC and OrcGC. Atomic<Rc>::load (line 27) is a

combination of get_snapshot and from_snapshot, but releases the guard at the end.

Atomic<Rc>::cas (line 32) implements the atomic compare-and-swap (CAS) operation with the

CAS for the underlying raw pointer. The expected raw pointer value is taken from an Rc or a
Snapshot. If the CAS is successful, the desired Rc is forget-ed to prevent running its destructor,

so that the ownership of its count is transferred to the Atomic<Rc>; and the old pointer value is

returned as an Rc reference, receiving the ownership of the count. If the CAS fails, the current raw

pointer value and the input Rc are returned.
The store function (line 36) atomically swaps the new pointer value with the old value, and applies

the implementation-specific decrement method to it. For example, CDRC schedules a deferred

decrement, while OrcGC and CIRC immediately apply a decrement. Similarly, the destructor of

Atomic<Rc> (line 39) loads the pointer value and requests its decrement.

3 IMMEDIATE DECREMENT
CIRC utilizes deferral like other modern methods, but it attempts to apply operations immediately

to resolve the problems of the other methods (§1.1). Specifically, CIRC (1) follows the immediate

decrement style that (in most cases) schedules a single task after the count reaches zero; and

(2) identifies a chain of garbage objects that can be immediately reclaimed. This section focuses on

the first aspect, immediate decrement. Its core design challenge is coordinating snapshots and the

zero count: even if the count has become zero, it should be possible to create an Rc reference out of
a Snapshot reference. Algorithm 2 presents the immediate decrement algorithm for CIRC without

weak references.
5

Immediate decrement. The decrement_strong function (line 51) is used for functions such as

Atomic<Rc>::drop and Atomic<Rc>::store. It first decrements the count with the FAA instruction

5
Our implementation uses SeqCst memory ordering for accesses to reference counts (loads, FAAs, and CASes). However,

we believe many of them can be relaxed. Our hazard pointer implementation uses asymmetric fences [Dice et al. 2001;

Goldblatt 2022] to reduce the protection cost.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 153. Publication date: June 2024.

Concurrent Immediate Reference Counting 153:9

Pending(0) Pending(1) Pending(2) Pending(3)

1 2 3Destructed
…

inc inc

inc inc

dec dec

dec dec

dec

resurrect
destruct

fail inc

cancel

re-defer

cancel

Fig. 3. The state machine of the strong reference count in CIRC. The numbers mean the physical value of the
counter. The “inc” and “dec” transitions are normal increments and decrements. The “destruct” transition
corresponds to the “if” branch of try_reclaim (Algorithm 2) and try_destruct (Algorithm 3). The “re-defer” and
“cancel” transitions correspond to the “else” branch. The “resurrect” transition corresponds to resurrection.
“fail inc” happens only in Algorithm 3, when attempting to increment already destructed object.

(which returns the old value). If the count has reached zero, it schedules a deferred execution of

the try_reclaim function (line 59), which is invoked after all the existing snapshot protections are

withdrawn. To ensure that the deferred try_reclaim is eventually invoked in scenarios such as

Fig. 1b, it occasionally triggers the execution of deferred tasks (line 54).

However, it is not safe to directly reclaim the object when the deferred function is invoked,

because a new Rc reference could have been created from a (now destroyed) Snapshot reference.
So, try_reclaim checks if the count is still zero, ensuring that there is no new Rc. If so, there cannot
be a new Snapshot, either. Therefore, it is safe to reclaim the object.

Resurrection. But if the count has increased, the reclamation process should be canceled and

retried later. Naively re-scheduling a deferred execution of try_reclaim is not correct, because just

before it is invoked again (after checking snapshot protections), a new Snapshot might be derived

from an Rc. If all the Rc references are removed after the creation of the Snapshot and before the

invocation of try_reclaim, the re-invoked try_reclaim sees zero count, triggering the reclamation.

So, using the new Snapshot reference may result in use-after-free.

To fix this, we let the increment_strong function (line 56) increment twice if the count was

zero, and try_reclaim call decrement_strong if the count was non-zero. In increment_strong, what
actually grants a count for a new Rc is the second increment (line 58). Intuitively, the first increment

(from zero to one, line 57) tells the pending try_reclaim that the object has been resurrected and

thus must be checked again for new snapshot protections. Since increment_strong is called with a

snapshot protection, the pending try_reclaim is invoked only after increment_strong completes.

Then, try_reclaimwill remove this resurrection count, and re-schedule itself if the count has become

zero. The try_reclaim function cannot immediately reclaim the object even if it has decremented to

zero, because a new Snapshot could have been created from a (now destroyed) Rc.
Fig. 3 summarizes the algorithm with a state transition diagram of the count. The count starts in

the state 1, and it moves along the states in the upper row by increments and decrements. When

it becomes zero, it enters Pending(0) state, waiting for the invocation of try_reclaim. It moves

along the Pending(𝑛) states with 𝑛 ≥ 0 by increments from increment_strong and decrements from

usual decrement_strong not called by try_reclaim. These transitions cannot move the count to

Pending(0) state, because of the extra resurrection increment of increment_strong from Pending(0).
Only try_reclaim can move the count from Pending(1) to Pending(0). This guarantees that there
is no concurrent execution of try_reclaim. For Pending(𝑛) with 𝑛 ≥ 2, try_reclaim returns the

count to one of the normal states. If try_reclaim is invoked in Pending(0), the count enters the final
Destructed state.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 153. Publication date: June 2024.

153:10 Jaehwang Jung, Jeonghyeon Kim, Matthew J. Parkinson, and Jeehoon Kang

𝑛root

0@𝑇1

𝑛1

1@𝑇2

𝑛2

1@_

𝑛3

2@_

𝑛4

Fig. 4. 𝑛1, 𝑛2, and 𝑛3 are detached from the list one by one, concurrently. 𝑛1 is decremented to zero at time
𝑇1, and 𝑛2 is decremented to one at time 𝑇2.

4 IMMEDIATE RECURSIVE DESTRUCTION
The design up to §3 still suffers from the slow reclamation of long links due to deferred destruction

(§1.1). For example, suppose consecutive nodes 𝑛1, 𝑛2, and 𝑛3 are detached from a linked list one at a

time as depicted in Fig. 4. After𝑛1 is destructed and𝑛2’s count is decremented to zero, try_reclaim(𝑛2)

is scheduled for deferred execution. To immediately destruct 𝑛2, we should immediately check if 𝑛2
has snapshot references. However, this cannot be done efficiently. In the HP version, one can scan

the hazard slots, but it will degrade the performance. Alternatively, one can temporarily increment

the referents of the snapshots and immediately decrement during collection, but it is not possible

in the RCU version since it does not track the protection of each individual object.

In this section, we develop the second component of CIRC: immediate recursive destruction

based on epoch-based RCU. We first introduce a generic idealized algorithm that tracks the time

each object was last reachable (§4.1) and refine it to an efficient algorithm leveraging epochs (§4.2).

4.1 Key Idea
In the above example, we observe that checking the safety of destructing 𝑛2 can be split into two

parts based on the time of snapshot creation.

(Snap-Old) Check if there are old snapshots for 𝑛2 by reusing the result of the protection scan

performed just before the invocation of try_reclaim(𝑛1). SMR schemes usually cache the scan

result to test multiple retired objects in batches. For example, HP first copies the set of protected

pointers, and epoch-based RCU computes the minimum epoch of active critical sections. If this

check started at time𝑇𝑠 , then the cache tells us whether the snapshots created before𝑇𝑠 are gone.

(Snap-New) Check if 𝑛2 has new snapshots that are created after 𝑇𝑠 . (Such a snapshot could have

been created from 𝑛root when it was pointing to 𝑛2.)

If 𝑛2 passes these checks and is destructed, 𝑛3 is decremented to zero and undergoes the same

procedure with the same protection cache. This procedure continues until reaching a node with a

non-zero count after decrement.

However, Snap-New is difficult to implement efficiently. For example, naively recording the time

of each snapshot creation would incur significant overhead, defeating the purpose of snapshot

references. Also, relying on user-provided information such as explicit retirement is not an option

since such an interface is inherently unsafe, defeating the purpose of automatic reference counting.

Tracking the upper bound of snapshot creation time. To tackle this challenge, we first consider
how to track the upper bound of the snapshot creation time, which can be used to implement

Snap-New by checking if this upper bound is smaller than𝑇𝑠 . We aim to maintain object timestamps
for each object such that when the object’s count reaches zero, its timestamp is the upper bound of

snapshot creation time. Specifically, the object timestamp should adhere to the following invariant:

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 153. Publication date: June 2024.

Concurrent Immediate Reference Counting 153:11

𝑛root 0@𝑇1

𝑛1

1@_

𝑛2

(a)

𝑛root 0@𝑇1 @𝑇𝑖

𝑛1

1@_

𝑛2

(b)

Fig. 5. Installing an Rc reference to a zero-count node. (a) 𝑛root initially points to 𝑛1. Thread 1 gets a Snapshot
to 𝑛1, creates a new node 𝑛2 (getting an Rc), and gets a Snapshot to 𝑛2. Thread 2 updates 𝑛root to null,
decrementing 𝑛1 to zero at time 𝑇1. (b) Thread 1 installs the Rc reference to 𝑛2 on 𝑛1 at time 𝑇𝑖 . When 𝑛1 is
destructed, we want to know if 𝑛2 can be immediately destructed.

(Invariant) The object timestamp is the upper bound of the time at which a snapshot might have

been derived from the object’s destroyed Rc references.

When destroying an Rc reference, i.e., decrementing a count, Snapshot references can no longer be

derived from that Rc reference. Therefore, object timestamps are updated as follows:

(Dec-Base) When an object is non-recursively decremented (e.g., in Fig. 4, decrementing 𝑛1 after

directing 𝑛root from 𝑛1 to 𝑛2), its object timestamp is updated to the current time.

Applying Dec-Base to recursive decrements (e.g., decrementing 𝑛2 due to the destruction of 𝑛1)

precludes immediate recursive destruction, because the recursive decrements are performed after

the scan (at 𝑇𝑠). Therefore, it needs special treatment in order to precisely track the snapshot time.

The key observation is that if no one had access to the Rc being destroyed since long ago, then

no one could have created a snapshot from it. We proceed by case analysis on how a thread that

created a snapshot to 𝑛2 was accessing the Rc from 𝑛1 to 𝑛2 that is being recursively destroyed.

• The snapshot is created after the Rc reference is stored in an Atomic<Rc> field of 𝑛1. In this

case, creating the snapshot requires a reference to the 𝑛1, either an Rc or a Snapshot. Therefore,
the time at which a snapshot to 𝑛2 can be derived this way is bounded by the time by which all

the references to 𝑛1 are destroyed. Since the destruction time of Rc references to 𝑛1 are tracked
by its object timestamp, we are left with the obligation of tracking the destruction time of the

snapshots to 𝑛1.

• The snapshot is created before the Rc is stored in 𝑛1, e.g., when it is directly owned by a thread.

Fig. 5 depicts such a scenario: 𝑛1 is decremented to zero at𝑇1, a thread that holds an Rc reference
to 𝑛2 creates a snapshot to 𝑛2, and this thread installs the Rc reference to 𝑛1 at 𝑇𝑖 .6 The upper
bound of the time when a snapshot to 𝑛2 can be derived this way is 𝑇𝑖 .

Summing up the above analysis, the following rules enforce the object timestamp invariant.

(Link) Each mutable pointer field (Atomic<Rc>) is associated with a link timestamp. Whenever a

reference is written, the link timestamp is updated together to the current time.

(Dec-Rec) When an object 𝑂 is decremented due to the destruction of a predecessor 𝑃 , 𝑂 ’s object

timestamp is updated to max(𝑇𝑃 ,𝑇 ′𝑃 ,𝑇𝑃→𝑂 ,𝑇𝑂), where 𝑇𝑃 is 𝑃 ’s object timestamp, 𝑇 ′
𝑃
is the time

by which all snapshots to 𝑃 are destroyed, 𝑇𝑃→𝑂 is the link timestamp of the link from 𝑃 to 𝑂

that is currently being destroyed, and 𝑇𝑂 is the current object timestamp of 𝑂 .

6
This does not happen in most non-blocking data structures as their correctness relies on the invariant that detached node’s

pointer fields are not modified. However, automatic reference counting should not rely on such an assumption.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 153. Publication date: June 2024.

153:12 Jaehwang Jung, Jeonghyeon Kim, Matthew J. Parkinson, and Jeehoon Kang

Problems. There are two main problems in implementing those rules. (1) In Dec-Rec, how do we

know when all the snapshots are destroyed (𝑇 ′
𝑃
)? For efficiency, this should not rely on additional

scanning or tracking individual snapshots. (2) How do we atomically get the current time, update

the count (resp. link), and update the object (resp. link) timestamp? If these operations are done

non-atomically, the updated object (resp. link) timestamps are outdated, thwarting the correctness.

4.2 An Efficient Epoch-Based Algorithm
We design an efficient epoch-based algorithm that addresses the problems discussed above.

Epoch-based RCU. Our algorithm builds on a variant of epoch-based RCU (EBR) algorithm by

Parkinson et al. [2017]. This scheme maintains an invariant that the difference between epochs of

overlapping critical sections is at most 1. In other words, if a thread’s critical section is assigned

epoch 𝑒 , then the upper bound on the epoch of other threads’ critical section is 𝑒 + 1. This ensures
that the end of a critical section with epoch 𝑒 happens before epoch 𝑒 + 2. In this scheme, an object

retired at 𝑒 can be reclaimed safely at epoch ≥ 𝑒 +3, because the maximum epoch of critical sections

that have snapshot to the object (“snapshot epoch” in short) is 𝑒 + 1, and the end of such a critical

section happens before epoch (𝑒 + 1) + 2.

Replacing timestamps with epochs. We use the epochs in place of the timestamps from the

idealized algorithm outlined in §4.1. Specifically, each object is associated with an object epoch, and
each mutable pointer field is associated with a link epoch. The flavor of EBR we use enables this

algorithm because a snapshot at epoch 𝑒 is guaranteed to be destroyed before epoch 𝑒 + 2, and the

staleness of the epoch is bounded by one even if the read of the current epoch and the update of

the object and link epochs are done non-atomically.

We start with the object epoch invariant that leverages the EBR’s invariant. If an Rc is destroyed
at 𝑒 , then a thread at 𝑒 + 2 cannot access it. This leads to the following invariant.

(Invariant) If the object epoch is 𝑒 , then the upper bound of the epoch of snapshots derived from

the object’s destroyed Rc reference is 𝑒 + 1.

This bound allows destructing zero-count objects with epoch 𝑒 if the current epoch is at least 𝑒 + 3.
The rules for updating object and link epochs should not simply overwrite the epoch to the

current epoch because an epoch 𝑒 can co-exist with 𝑒 − 1 and 𝑒 + 1. For example, if an object 𝑂 has

epoch 𝑒𝑂 , the thread that decrements 𝑂 could be in epoch 𝑒𝑂 − 1. Updating the object epoch to

𝑒𝑂 − 1 violates the Invariant because there can be a snapshot to 𝑂 at epoch 𝑒𝑂 + 1. Therefore, the
rules should ensure that they do not decrease the object epoch and link epoch:

(Dec-Base) When an object with epoch 𝑒𝑂 is non-recursively decremented by a thread at epoch 𝑒 ,

the object’s epoch is updated to max(𝑒𝑂 , 𝑒).
(Link) When a reference is written to a mutable pointer field with link epoch 𝑒𝑙 by a thread at

epoch 𝑒 , the link epoch is updated to max(𝑒𝑙 , 𝑒).

Finally, we consider recursively decrementing an object𝑂 due to the destruction of a predecessor 𝑃 .

The problematic part of Dec-Rec in §4.1 was 𝑇 ′
𝑃
, the maximum destruction time of snapshots to 𝑃 .

Note that it suffices to track the maximum destruction time of Snapshots that can be created before

𝑇𝑃 . Thanks to the EBR version of Invariant, if 𝑃 reaches zero count with object epoch 𝑒𝑃 , it is

guaranteed that the maximum snapshot epoch of 𝑃 is 𝑒𝑃 + 1. Therefore, we have the following rule:

(Dec-Rec) When an object 𝑂 is decremented due to the destruction of a predecessor 𝑃 , 𝑂 ’s object

epoch is updated to max(𝑒𝑃 , 𝑒𝑃→𝑂 , 𝑒𝑂), where 𝑒𝑃 is 𝑃 ’s object epoch, 𝑒𝑃→𝑂 is the epoch of the

link from 𝑃 to 𝑂 that is currently being destroyed, and 𝑒𝑂 is the current object epoch of 𝑂 .

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 153. Publication date: June 2024.

Concurrent Immediate Reference Counting 153:13

Truncating epochs. The algorithm so far assumes using a dedicated field for each object epoch

and link epoch. To reduce the overhead of an extra word, epochs can be truncated into a few bits

and packed into the reference count for an object epoch and the most significant bits (MSBs) of the

pointer value for a link epoch.

The key ideas are that it is safe to over-approximate the object and link epochs because it only

prevents destruction; and that if the current epoch is𝐶 , then the upper bound of the epoch value in

the whole system is𝐶 + 1, bounding the over-approximation. Specifically, for 𝑏-bit truncated epoch

𝑒 , i.e., the 𝑏 least significant bits (LSBs) of the real epoch, if the current untruncated epoch is 𝐶 , we

define the over-approximation function: ceil𝑏,𝐶 (𝑒) = max{𝐸 | 𝐸 = 𝑒 + 2𝑏𝑛, 𝑛 ∈ N, 𝐸 ≤ 𝐶 + 1}.
Then we define two operators required for our algorithm: the expired𝑏,𝐶 (𝑒) predicate that tests

if the real untruncated epoch has no snapshot; and the max𝑏,𝐶 function that over-approximates the

maximum of over-approximations of truncated epochs. Formally, they should satisfy the following

properties.

expired𝑏,𝐶 (𝑒) =⇒ ceil𝑏,𝐶 (𝑒) ≤ 𝐶 − 3, max(ceil𝑏,𝐶 (𝑒1), ceil𝑏,𝐶 (𝑒2)) ≤ ceil𝑏,𝐶 (max𝑏,𝐶 (𝑒1, 𝑒2))

The key idea for implementing these operators is to operate in the translated epoch space such

that 𝐶 + 1—the upper bound on the epochs in the system—corresponds to the maximum value

in the space of unsigned 𝑏-bit numbers. That is, trans𝑏,𝐶 (LSB𝑏 (𝐶 + 1)) = 2
𝑏 − 1. This can be

implemented as follows: trans𝑏,𝐶 (𝑒) := LSB𝑏 (𝑒 −𝐶 − 2) (= LSB𝑏 (𝑒 + ((2𝑏𝑛 − 1) − (𝐶 + 1)))), and
untrans𝑏,𝐶 (𝑒) := LSB𝑏 (𝑒 +𝐶 + 2). Therefore, the operators are implemented as follows:

max𝑏,𝐶 (𝑒1, 𝑒2) := untrans𝑏,𝐶 (max(trans𝑏,𝐶 (𝑒1), trans𝑏,𝐶 (𝑒2)))
expired𝑏,𝐶 (𝑒) := trans𝑏,𝐶 (𝑒) ≤ trans𝑏,𝐶 (𝐶 − 3) where 𝑏 ≥ 3

We experimentally found that 𝑏 = 4 provides sufficient progress of the recursive destruction.

5 SUPPORTINGWEAK REFERENCES
In this section, we add weak references to CIRC to support data structures that contain reference

cycles. Our algorithm largely follows CDRC [Anderson et al. 2022]’s approach,
7
but it is adapted

to our immediate decrement algorithm and incorporates Parkinson et al. [2023]’s optimization.

Algorithm 3 presents the immediate decrement algorithm extended with weak references.

Background. Normally, automatic reference counting cannot reclaim cyclic structures due to the

cyclic dependency of reclamation. Breaking the dependency requires at least one edge in the cycle

to be an uncounted reference. To handle this with a safe interface, reference counting schemes

usually come with weak references (represented by the Weak<T> type) associated with weak counts.
Weak references make reclaiming an object a two-step process: when an object has no incoming

strong references, then it can be destructed, which removes all its outgoing references; and when

an object has no incoming weak (and strong) references, its memory block can be deallocated.

This allows an object pointed only by weak references in a cycle to initiate destruction, which

eventually deallocates it after the destruction of the cycle removes its weak references. At the same

time, programmers can safely check whether the referent of a weak reference has not yet been

destructed and obtain a dereferenceable strong reference (called upgrading).
The standard strategy for implementing the two-stage reclamation for concurrent reference

counting is to give an implicit weak count to undestructed objects. That is, the weak count of

an object is the number of weak references plus one if the strong count is non-zero. This allows

detecting the absence of both strong and weak references atomically.

7
CDRC’s weak reference algorithm has a bug, which is later fixed by Parkinson et al. [2023]. See §7 for details.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 153. Publication date: June 2024.

153:14 Jaehwang Jung, Jeonghyeon Kim, Matthew J. Parkinson, and Jeehoon Kang

Algorithm 3 CIRC with weak references. Notable differences from strong-only CIRC and the

corresponding parts in CDRC are highlighted green.

71: function Rc<T>::downgrade(&self)→Weak<T>
72: if self.ptr = null then return Weak { ptr: null }
73: (*self.ptr).increment_weak(); returnWeak { ptr: self.ptr }
74: function Weak<T>::upgrade(&self)→ Rc<T>
75: if self.ptr ≠ null && (*self.ptr).increment_strong() then return Rc { ptr: self.ptr }
76: return Rc { ptr: null }
77: const DESTRUCTED = 1 << (BITS - 1);
78: function try_destruct<T>(ptr: Object<T>*)
79: // Since try_destruct is exclusive, CAS fails only when resurrected.
80: if (*ptr).strong.cas(0, DESTRUCTED).is_ok() then

81: destruct(&(*ptr).data); (*ptr).decrement_weak()
82: else
83: (*ptr).decrement_strong()
84: function Object<T>::increment_strong(&self) → bool
85: val← self.strong.faa(1)
86: if (val & DESTRUCTED) ≠ 0 then return false

87: if val = 0 then self.strong.faa(1)
88: return true
89: function Atomic<Weak<T>>::get_strong_snapshot(&self)→ Snapshot<T>
90: loop
91: (ptr, weak_guard)← weakAD.acquire(&self.inner)
92: strong_guard← strongAD .acquire_raw(ptr)

93: if ptr ≠ null && ¬ (*ptr).is_destructed() then
94: weakAD.release(weak_guard)
95: return Snapshot { ptr, guard: strong_guard }
96: else
97: strongAD.release(strong_guard) ; weakAD.release(weak_guard)
98: if ptr = null || self.inner.load() = ptr then
99: return Snapshot { ptr: null, guard: null }
100: function Object<T>::is_destructed(&self)→ bool
101: val← self.strong.load()
102: if val = 0 then // Try resurrection.
103: match self.strong.cas(0, 1)
104: case OK(_) then return false
105: case Err(cur) then val← cur
106: return (val & DESTRUCTED) ≠ 0

Managing weak counts. AWeak reference to an object is constructed from an Rc reference by
the Rc::downgrade function (line 71). Similarly to Rc, a Weak can be stored to and loaded from an

Atomic<Weak>. Updating the weak count is done in the same manner as the strong count of the

strong-only CIRC, but using weakAD, the instance of acquire-defer for protecting the object from

deallocation but not destruction (omitted in the algorithm).
8
For example, the increment_weak

function (omitted) resurrects the count if the count was zero, and the decrement_weak function

8
Conceptually, CIRC uses two separate instances of acquire-defer: strongAD for managing destruction and weakAD for

deallocation. However, implementations may use a single instance for both tasks.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 153. Publication date: June 2024.

Concurrent Immediate Reference Counting 153:15

(omitted) schedules a deferred execution of the try_dealloc function (omitted), which deallocates

the memory block if the count was not resurrected.

The try_reclaim function from Algorithm 2 is renamed to try_destruct (line 78) and modified

to remove the implicit weak count by invoking decrement_weak when the count has not been

resurrected. However, the resurrection check should be modified to take account of the interaction

between weak references and strong references. We discuss this change below.

Increment-if-not-destructed. Weak::upgrade (line 74) creates an Rc reference by atomically

incrementing the strong count if the referenced object has not been destructed yet. Therefore,

increment_strong should be modified to fail (return false) when the object is already destructed.

Traditional reference counting method implements this operation (sometimes called increment-if-

not-zero or sticky counter) as a simple CAS loop that tries adding one to the count when the count

is non-zero. However, this approach is not compatible with Algorithm 2 as it results in spurious

failures. This is because the count’s physical value becoming zero is not the linearization point

of the destruction of the object. Even if the count is zero, there can be snapshots preventing the

destruction and the count can even be resurrected. In other words, it is not possible to distinguish

the Pending(0) state and Destructed state in Fig. 3 just by looking at the count value. Therefore, we

need a new increment-if-not-destructed operation.

We adopt the idea of stealing a bit from the count to indicate the count’s state used in CDRC [An-

derson et al. 2022] and Parkinson et al. [2023]’s wait-free increment-if-not-zero algorithm. The

DESTRUCTED bit indicates whether the count is in Destructed state. try_destruct tries setting
DESTRUCTED bit by a CAS from 0 (line 80). If successful, the count transitions from the Pending(0)
state to Destructed state, allowing it to proceed to destruction. If the CAS failed, then it must be due

to resurrection, because try_destruct cannot be invoked concurrently. So, it calls decrement_strong
as in the strong-only version.

The modified increment_strong function first increments the count with FAA, and then checks

the DESTRUCTED bit (line 86). If set, the operation fails. This corresponds to the self transition

of the Destructed state in Fig. 3, which changes the physical value but not the logical state. If

DESTRUCTED was not set and the count value was zero (line 87), then the previous increment has

resurrected the count, so the count should be incremented again.

Loading Snapshot from Atomic<Weak>. With the interface introduced so far, obtaining a

dereferenceable reference from a mutable weak pointer field (Atomic<Weak>) involves at least
two increments: one in Atomic<Weak>::load and at least one in Weak::upgrade. Following CDRC’s

weak snapshots, CIRC supports the Atomic<Weak>::get_strong_snapshot function (line 89), which

creates a Snapshot if and only if the object is not destructed, without updating the counts in most

cases.
9

The get_strong_snapshot function starts by acquiring a protection in weakAD to prevent deal-

location of the referent. Then it uses the acquire_raw function to initiate the acquisition of a

protection in strongAD (corresponding to writing to a hazard slot in HP, and no-op in RCU). The

protection is validated (line 93) by checking that the object’s strong count is not in the Destructed
state, using the is_destructed function (line 100).

For this validation to be sound, i.e., the object does not get destructed while the snapshot is

active, the is_destructed function must ensure the scheduled try_destruct (if exists) will fail when
it returns false. To this end, if the strong count was in the Pending(0) state, it resurrects the count
with a CAS from zero to one (line 103). If failed, it re-checks whether the count transitioned to the

Destructed state (line 106).

9
CDRC’s weak snapshot is weaker than the normal snapshot. See §7 for details.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 153. Publication date: June 2024.

153:16 Jaehwang Jung, Jeonghyeon Kim, Matthew J. Parkinson, and Jeehoon Kang

The validation failure of get_strong_snapshot does not necessarily mean that the object pointed

by the source Atomic<Weak> is destructed, because it may now point to another object. Therefore,

instead of unconditionally returning null (which would not be linearizable), it retries from the

beginning if the source points to a different object (lines 90 and 98).

Optimization for objects without weak references. Algorithm 3 introduces non-negligible over-

head from the deferred execution of try_dealloc when the weak count becomes zero. However,

deferred deallocation is not necessary if the object has never had a weak reference, because the

object could not have been acquired in weakAD. Following Parkinson et al. [2023], we optimize

such cases by taking another bit from the count to indicate whether the object has ever had a weak

reference. The application is straightforward: the increment_weak function attempts to set this bit

if it is not already set, and try_destruct can immediately deallocate the memory if it is not set. We

present the full algorithm in the appendix [Jung et al. 2024].

Interaction with immediate recursive destruction. The immediate recursive destruction algo-

rithm (§4) is modified to work with try_destruct function. Note that the deferred executions of

try_delloc do not cause the garbage chain problem, since they do not depend on one another.

6 EXPERIMENTAL EVALUATION
We implemented CIRC as a Rust library and evaluated it on a synthetic benchmark suite

10
to

demonstrate that it is resistant to the long garbage chain problem and introduces only a minor

overhead to underlying SMR schemes, while keeping the simple interface of reference counting.

The benchmark suite includes the following reclamation schemes: NR: the baseline that does
not reclaim memory; EBR: epoch-based RCU;HP: hazard pointers with asymmetric fence opti-

mization [Dice et al. 2001; Goldblatt 2022]; CIRC-EBR: the full CIRC with EBR; CIRC0-HP: the
HP flavor of CIRC without immediate recursive destruction; CDRC-EBR and CDRC-HP: the EBR
and HP flavor of CDRC

11
. CIRC and CDRC share the same code for the underlying reclamation

schemes. In the implementation of the reclamation schemes, configuration parameters are tuned to

adequately balance the throughput and memory usage.

The benchmark suite consists of the following lock-free map and queue data structures, which

we believe represent most use cases of atomic<shared_ptr<T>> libraries.HMList: Harris-Michael

linked list [Michael 2002a], as an example of long sequence of read-only operations; HashMap:
chaining hash table using HMList [Michael 2002a], as an example of a large number of root locations

with short link chains; NMTree: Natarajan-Mittal tree [Natarajan and Mittal 2014]; SkipList:
skiplist [Shavit et al. 2011], as an example of complex data structures with high node indegree;

and DoubleLink: doubly-linked queue [Ramalhete and Correia 2017b], as an example of a long

reclamation dependency chain and the use of weak pointers for back references. CIRC-EBR-based

NMTree, SkipList, and DoubleLink is about 500, 400, and 140 lines of code respectively.

The benchmark suite was compiled with Rust nightly-2023-04-21 with default optimization and

link-time optimization. We used jemalloc [Evans 2006] for the memory allocator. We conducted

experiments on two machines: AMD64T: single-socket AMD EPYC 7543 (2.8GHz, 32 cores, 64

threads) with 8×32GiBDDR4 DRAMs (256GiB), and INTEL96T: dual-socket Intel Xeon Gold 6248R
(3.0GHz, 48 cores, 96 threads) with 12×32GiB DDR4 DRAMs (384GiB). The machines run Ubuntu

22.04 and Linux 5.15 with the default configuration. The results from the two machines exhibit a

similar trend, so we mainly discuss AMD64T results here. For full results, see the appendix [Jung

et al. 2024].

10
Available at the project website [Jung et al. 2024].

11
Our CDRC implementation does not fix the weak reference bug discussed in §7.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 153. Publication date: June 2024.

Concurrent Immediate Reference Counting 153:17

Methodology. For map data structures, each thread repeatedly calls get(), insert(), and remove()
methods randomly. We measured throughput (operations per second) and the peak memory usage

for (1) varying number of threads: 1, 8, 16, 24, · · · , 128 (twice the number of hardware threads);

(2) three types of workloads: write-heavy (50% inserts and 50% removes), read-write (50% reads

and 50% writes), and read-most (90% reads and 10% writes); and (3) fixed time: 10 seconds. The

key ranges for HMList are 1K and 10K, and the key ranges for the others are 100K and 100M. The

data structures are pre-filled to 50%. Figs. 6 and 7 show representative results from this benchmark.

For DoubleLink, each thread repeatedly enqueues an element and then dequeues an element. We

measured the throughput (operations per second) of a pair of operations and the peak memory

usage for (1) varying number of threads: 1, 2, 4, 8, 16, 24, · · · , 128 (twice the number of hardware

threads); and (2) fixed time: 10 seconds. For this benchmark, we additionally evaluate a variant

of CDRC, CDRC-EBR-Flush, which flushes its thread-local deferred tasks after dequeuing an

element. Fig. 8 shows the representative results from this benchmark.

Throughput. CIRC adds only a moderate performance overhead to the backend SMR scheme, and

outperforms CDRC in write-heavy workloads thanks to the reduced number of deferred tasks, and

adds only a moderate performance overhead to the backend SMR scheme. The additional overhead

of maintaining object and link epochs for recursive destruction was negligible.

The read-most HMList benchmark (Fig. 7) compares the overhead in traversing long data struc-

tures. For the EBR backend, CIRC and CDRC introduce negligible overhead to EBR, showing equal

throughput. For the HP backend, CIRC and CDRC can be slower than HP. Since the size of a

Snapshot is two words in HP backend (a pointer value and a Guard, i.e., pointer to a hazard pointer),
the cost of swapping Snapshots for hand-over-hand acquisition is bigger. CIRC0-HP is slightly

slower than CDRC-HP in this benchmark, but it is slightly faster in INTEL96T (see appendix).

In the high-throughput low-indegree data structure benchmarks (HashMap and NMTree, Figs. 6a

and 6b) CIRC and CDRC introduce up to 20% and 30% overhead to the underlying SMR scheme,

respectively. In SkipList, a high-throughput and high-indegree data structure (Fig. 6c), CIRC-EBR,

CIRC0-HP, and CDRC-EBR introduce up to 35% performance overhead to the underlying SMR

scheme. CDRC-HP shows a significantly larger overhead, up to 58%. Note that CDRC exhibits amuch

larger memory footprint (discussed below), suggesting that its performance would substantially

degrade if this problem is fixed.

In DoubleLink (Fig. 8a), CIRC-EBR is up to 35% slower than EBR due to the extra deferred task

required for weak references. CDRC-EBR shows better throughput than EBR, because its progress

in reclamation is very slow (explained below).

In the map benchmarks with big key ranges (see appendix), the throughput gap is smaller due to

reduced contention: the gap among EBR, CDRC-EBR, and CIRC-EBR is within 10% and the gap

among HP, CDRC-HP, and CIRC-HP is within 30%.

INTEL96T benchmarks show a similar trend (see appendix), but the throughput gap between RC

schemes and the underlying SMR is generally larger than that of AMD64T (at most 45% between

EBR and CIRC-EBR). We believe that reference count updates incur more overhead in multi-socket

machines.

Memory usage. CIRC exhibits a memory footprint similar to its underlying SMR scheme, because

it schedules only a single deferred task for reclaiming an object in the common case, and it can

recursively destruct a long chain of unreachable objects without scheduling a deferred task.

While CDRC shows a similar trend in HMList, HashMap, and NMTree (Figs. 6a, 6b and 7), SkipList

(Fig. 6c) and DoubleLink (Fig. 8b) benchmark demonstrate that CDRC cannot promptly reclaim

long linked structure. DoubleLink is a linked list where elements are dequeued from the head and

enqueued to the tail, which naturally forms a long chain of detached objects (§1.1). In SkipList,

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 153. Publication date: June 2024.

153:18 Jaehwang Jung, Jeonghyeon Kim, Matthew J. Parkinson, and Jeehoon Kang

EBR HP CIRC-EBR CIRC0-HP

CDRC-EBR CDRC-HP CDRC-EBR-Flush NR

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

20

40

60

80

100

120

140

160

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

0.1

0.2

0.3

0.4

0.5

Pe
ak

 m
em

or
y

us
ag

e
(G

iB
)

HashMap

(a) HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

20

40

60

80

Th
ro

ug
hp

ut
 (M

 o
p/

s)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pe
ak

 m
em

or
y

us
ag

e
(G

iB
)

NMTree

(b) NMTree
1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

10

20

30

40

50

60

70

Th
ro

ug
hp

ut
 (M

 o
p/

s)

SkipList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

2

4

6

8

Pe
ak

 m
em

or
y

us
ag

e
(G

iB
)

SkipList

(c) SkipList

Fig. 6. Write-heavy map benchmarks with key range 100K. Throughput (top, higher is better) and peak
memory usage (bottom, lower is better) for a varying number of threads.

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HMList

Fig. 7. Throughput (higher is bet-
ter) of read-most HMList with key
range 10K.

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.4

0.6

0.8

1.0

1.2

Th
ro

ug
hp

ut
 ra

tio
 to

 R
CU

(a) Throughput ratio to EBR
(higher is better)

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

100

101

102

103

104

Pe
ak

 m
em

or
y

us
ag

e
ra

tio
 to

 R
CU

(b) Peak memory usage ratio to
EBR (lower is better)

Fig. 8. DoubleLink benchmark

even if nodes are detached from arbitrary positions in the list, it is likely to form dense unlinked

chains due to the multiple levels of links. In such cases, eagerly flushing the batch of deferred tasks

(CDRC-EBR-Flush in Fig. 8) at the cost of severe performance degradation only slightly improves

the memory footprint, because one flush can only destruct a single node (the first node in unlinked

node chain), which is still not guaranteed due to the existence of snapshots.

Under heavy contention, CIRC-EBR’s memory footprint may grow up to 4× larger than EBR’s.

We believe that this is due to the dependency in the reclamation of linked objects. Even if CIRC

allows a thread to quickly reclaim long chains, the chain can be reclaimed sequentially by only one

thread at a time because of the dependency. On the other hand, manual SMR schemes can reclaim

the chain in parallel thanks to the assumption that all retired objects are unreachable.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 153. Publication date: June 2024.

Concurrent Immediate Reference Counting 153:19

7 RELATED AND FUTUREWORK
In this section, we compare CIRC and related algorithms in detail, introduce other related work,

and conclude with the future work.

Reference countingGCs. Reference counting is a key component in somemodern high-performance

GCs such as LXR [Zhao et al. 2022]. As discussed in §1, one of the key optimizations is to avoid

eagerly counting the local references and defer the job to the GC.

Deutsch and Bobrow [1976]’s method defers reclamation of zero-count objects by putting them

into the zero-count table (ZCT) data structure. The GC occasionally initiates a stop-the-world pause

where all the other threads are stopped, scans all local variables and temporarily marks the objects

referenced by them, and reclaims all unmarked objects in ZCT. Pausing all the threads at once is

crucial for correctness. For example, if the GC pauses and scans each thread one by one, it may

miss the local references newly created by a thread that was already scanned, and the objects

decremented to zero after the creation of local reference can be prematurely reclaimed.

On the other hand, Bacon et al. [2001]’s method does not require stop-the-world pause, because it

enforces the invariant that the zero-count objects do not have any incoming references by deferring

decrements to the next round of the collection cycle. To do so, the time is divided into epochs, and
the reference count updates (including increments) are first logged in a thread-local buffer with

the current epoch number. The GC interrupts each thread one at a time to fetch their logs, scan

their local variables, and increment their epoch. After checking all the threads, the GC applies

the increments from the current epoch, temporarily increments the scanned local variables, and

executes the decrements from the previous epoch, reclaiming the objects that reach the zero count.

Deferred increment is not crucial for correctness, but it allows the designated GC to update the

counts non-atomically, avoiding expensive synchronization.

Another prominent optimization is coalescing by Levanoni and Petrank [2001]. Essentially, this

approach considers only the difference between the heap states at each epoch boundary. This

eliminates the redundant reference count updates for the intermediate referents of frequently

modified heap objects. This idea is implemented by logging the first update to each field. The GC

collects the logs from each thread one by one without stop-the-world. To resolve the inconsistency

in the data due to concurrency, the GC checks each thread multiple times. In addition, the GC snoops
the new references while it is running by letting each thread record the objects whose reference

is written to another heap object. This information is also used for correctly handling the ZCT.

CIRC’s resurrection mechanism can be considered as a variant of snooping, where only increment-

from-zero is recorded. CIRC and other concurrent reference counting methods for unmanaged

languages we are aware of do not utilize coalescing.

These optimizations are not easy to apply to unmanaged languages. Since unmanaged languages

use raw pointers that are ambiguous with non-pointer values, automatic garbage collectors for

them usually resort to conservative methods [Boehm and Weiser 1988; Shahriyar et al. 2014].

Furthermore, scanning the local variables still requires stopping the thread. Recent work such as

FRC, OrcGC, and CDRC, and our algorithm CIRC use SMR method’s local reference protection to

replace the GC’s role of scanning the local references.

Deferred decrement in unmanaged languages. FRC [Tripp et al. 2018] builds on the buffered

reference counting method by Bacon et al. [2001]: the processing of decrements is deferred to the

collector, and the collector scans and temporarily increments the local references. After loading a

local reference, it should be explicitly announced, similarly to hazard pointers (HP) [Michael 2004].

CDRC uses deferred decrements too, but the time at which the decrements are applied is governed

by an underlying SMR. The initial version of CDRC [Anderson et al. 2021] was based on HP, but it

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 153. Publication date: June 2024.

153:20 Jaehwang Jung, Jeonghyeon Kim, Matthew J. Parkinson, and Jeehoon Kang

was generalized to utilize any standard SMR as its backend [Anderson et al. 2022]. Conceptually,

the underlying SMR protects a count of the given object. The deferred decrement is implemented

with the retire function modified to decrement the object when the count is no longer protected.

Since the SMR prevents decrements, the object can be immediately reclaimed when the count hits

zero, and the local references do not need to be temporarily incremented during the collection

routine. This allows using critical-section-based protection SMR methods such as Read-Copy-

Update (RCU) [McKenney and Slingwine 1998] or epoch-based reclamation (EBR) [Fraser 2004] as

the backend, which usually are the fastest SMRs.

An advantage of CDRC over CIRC is that it trivially allows conditional store of Snapshot with
lazy increment, i.e., passing a Snapshot to Atomic<Rc>::cas as desired and incrementing the count

after the successful CAS. This is not allowed in CIRC because its Snapshot does not guarantee
a non-zero count, and thus it may lead to a negative count, which is not compatible with the

resurrection mechanism. For example, before Atomic<Rc>::cas increments, another thread may

overwrite the pointer (e.g., with store) and decrement the count to -1. Therefore, CIRC only takes

Rc as the argument of Atomic<Rc>::cas, and as a result, it may have to run a pair of a redundant

increment and decrement when it fails. This affects operations that make an object point to another

object in a data structure, e.g., removing a node from a linked list. On the other hand, CDRC’s

Snapshot guarantees a non-zero count because it protects the count itself, allowing lazy increment.

However, our evaluation (§6) shows that the advantage of immediate decrements usually outweighs

the disadvantage of lacking this feature when implementing concurrent data structures. Such

operation failures are less common, and defer is called only “1 + (the number of resurrections)”

times in CIRC while on the other hand it is called “1 + (the number of all increments)” times in

CDRC.

Deferred reclamation in unmanaged languages. OrcGC [Correia et al. 2021] is closer to CIRC

and Deutsch and Bobrow [1976]’s ZCT-based approach in that decrements are immediately applied

and the zero-count objects enter a special state that handles their potential reclamation. A variant of

HP called pass-the-pointer is used for managing this state: hazard pointers protect local references,

and the retire function is modified to scan the hazard pointers and reclaim the unprotected zero-

count objects.

As discussed above, algorithms following this style should handle concurrency carefully. For

example, suppose a zero-count object is incremented and decremented back to zero while the

reclamation procedure for the object is running. There are two problems: (1) the reclamation

process should not be invoked again for that object to avoid double-free; and (2) if a new local

reference is created during that period, the reclamation should be canceled since the scan may

have missed the new reference. For (1), OrcGC uses a bit in the count to indicate that the collector

is checking the object. For (2), each reference count is combined with a version number that is

increased whenever the count is updated. This allows for detecting when a reference count has

remained zero for a period of time. If there was no Snapshot during this period, the object is safe

to reclaim.

This combination of methods also tolerates negative counts and thus allows conditional store

of Snapshot with lazy increment. We believe CIRC’s resurrection mechanism can be modified to

tolerate negative counts by using bit flags instead of additional increments.

Unlike the reference count epoch we use in §4, an overflow in OrcGC’s version numbers can

lead to unsoundness in the algorithm: incorrectly believing the count remained zero. As this

must be packed into a single atomically updatable location, there is a trade-off between potential

unsoundness and the number of possible incoming edges to an object.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 153. Publication date: June 2024.

Concurrent Immediate Reference Counting 153:21

Other automatic concurrent memory management methods. Isolde [Yang and Wrigstad 2017]

takes a similar approach to the EBR variant of CDRC. Its memory management method is based on

delaying decrements of objects until EBR says that there are no snapshots. In addition, it uses a

separate heap for implementing lock-free data structures, and an ownership type system to ensure

that the correct annotations can be added to the data structure. We believe Isolde will suffer from

the problems of deferral discussed in §1.1.

Parkinson et al. [2017] take a similar approach to FRC, but instead of using reference counts,

they use unique owning pointers. Using unique pointers means that once the owning reference

goes away it cannot come back, which simplifies the collection. This, however, severely limits the

types of data structures that can be represented.

Cohen and Petrank [2015] take a different approach to implementing automatic memory recla-

mation in a lock-free setting. They effectively build a simple GC for an individual data structure

with multiple phases to mark and sweep the live objects, and a custom allocator to track which

regions of memory are associated with the data structure. The approach requires that the individual

operations on the data structure are restartable, which limits the applicability of the approach to

tailored data structures, unlike the more general reference-counting-based approaches.

Reclamation of linked structures. Michael [2020] considers a combination of hazard pointer and

reference counting in data structures with immutable links (e.g., Michael-Scott queue [Michael and

Scott 1996]), in which only the first node needs to be protected by a hazard pointer, allowing efficient

traversal. Such a combination normally requires a hazard pointer scan for destructing each link,

resulting in either performance degradation or slow reclamation (§1.1). However, Michael observes

that if links are immutable, the result of the scan can be reused for descendants without worrying

about new protections, which allows immediate recursive destruction. Our immediate recursive

destruction algorithm (§4) generalizes this observation and dynamically checks the condition with

an epoch-based method.

Manual SMR algorithms. RCU-style SMR algorithms such as EBR are fast thanks to critical-

section-based protection, but their reclamation can get stuck if a thread does not deactivate its

critical section (e.g., suspended for a long time), leading to unbound memory usage. On the other

hand, HP-style SMR algorithms bound the memory usage at the cost of per-object protection. Some

recent algorithms such as Hazard Eras (HE) [Ramalhete and Correia 2017a] and Interval-based

Reclamation (IBR) [Wen et al. 2018] mix two approaches to provide good throughput and bounded

memory usage. In HE and IBR, a bounded number of objects can be allocated or retired in each

epoch (incremented when the bound is reached), and each thread protects a bounded set of epochs,

which is announced less frequently than per-object protection. The CDRC and our immediate

decrement algorithm can use such methods as a backend. However, it is unclear whether our

recursive destruction can be applied to them.

Weak references. CIRC’s weak reference algorithm consists of two components: protecting an

object from being deallocated while loading Atomic<Weak>, and increment-if-not-destructed for

upgrading to a strong reference. The first is a direct adaptation of the deferral-based reference

counting (§2.2), and the second takes the idea from the wait-free increment-if-not-zero in the weak

reference algorithms by Anderson et al. [2022] and Parkinson et al. [2023].

Parkinson et al.’s algorithm is similar to Anderson et al.’s, but it fixes a bug in the latter. Both

algorithms use a bit from the count word to represent whether the count is closed (permanently

zero). FAA can be used to manipulate the count without affecting the bit, and when the count

reaches zero, the closed bit should be set with a CAS. A subtlety in this algorithm is that it is possible

for the count to be incremented away from zero before the bit is set, and this was the source of the

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 153. Publication date: June 2024.

153:22 Jaehwang Jung, Jeonghyeon Kim, Matthew J. Parkinson, and Jeehoon Kang

bug in Anderson et al.’s algorithm. Multiple threads may decrement to zero, attempt to set the closed

bit, and if successful, decrement the implicit weak count. If the thread that successfully sets the

closed bit also deallocates the object, the other threads attempting to set the bit will access the freed

memory. Parkinson et al.’s solution is to associate the implicit weak count with the strong count’s

physical value being zero instead of it being closed. When a weak reference holder increments from

zero, it should increment the weak count, because the weak reference’s weak count is logically

converted to the implicit weak count. This protects the other threads from deallocation.

In CIRC, the implicit weak count is still associated with the object’s destruction, but it does not

suffer from this problem because its resurrection mechanism guarantees try_destruct is exclusive.
In fact, CIRC’s resurrection count plays a similar role as Parkinson et al.’s implicit weak count.

CIRC’s Atomic<Weak>::get_strong_snapshot is based on CDRC’s weak snapshot. CDRC’s weak
snapshot has the same goal, but it is weaker than normal Snapshot in that creating an Rc reference
out of it may fail. To implement weak snapshot, CDRC uses two acquire-defer instances for

destruction: strongAD defers decrements, and disposeAD defers destruction after the count reaches

zero. In CDRC, the protection in strongAD cannot be validated by checking that the count is

non-zero (line 93), because even if the count value is currently non-zero, there might be a deferred

decrement scheduled earlier. Therefore, the count can be closed after obtaining a weak snapshot,

after which no new Rc reference can be created. On the other hand, validating the disposeAD
protection with a non-zero count does guarantee that the object is not destructed, because the

count being non-zero implies that the destruction has not been scheduled yet.

Conclusion and future work. We have designed Concurrent Immediate Reference Counting (CIRC),
a safe concurrent reference counting method for unmanaged languages that promptly reclaims long

linked structures without additional per-pointer announcements. Our evaluation shows that CIRC

performs competitively with the fastest manual methods in highly concurrent data structures.

As future work, we would like to explore recursive destruction algorithms that support other

SMR techniques. CIRC adds EBR to the list of SMRs supporting recursive destruction (previously

only HP, as discussed in §1.1), but EBR-based reference counting has a limitation that it does not

bound the memory usage. To achieve high performance and bounded memory usage at the same

time, a recursive destruction algorithm for hybrid SMRs such as HE and IBR is needed.

We also plan to formally verify CIRC; apply our techniques to GCs for managed languages; and

adopt more optimizations from the GC literature such as coalescing to unmanaged languages.

ACKNOWLEDGMENTS
We thank the PLDI 2024 reviewers for their valuable feedback. Jaehwang Jung, Jeonghyeon Kim

and Jeehoon Kang are supported by Samsung Research Funding & Incubation Center of Samsung

Electronics under Project Number SRFC-IT2201-06.

DATA AVAILABILITY STATEMENT
The implementation of CIRC and the appendix for this paper can be found in [Jung et al. 2024].

REFERENCES
Daniel Anderson, Guy E. Blelloch, and Yuanhao Wei. 2021. Concurrent Deferred Reference Counting with Constant-Time

Overhead. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and
Implementation (Virtual, Canada) (PLDI 2021). Association for Computing Machinery, New York, NY, USA, 526–541.

https://doi.org/10.1145/3453483.3454060

Daniel Anderson, Guy E. Blelloch, and YuanhaoWei. 2022. Turning Manual Concurrent Memory Reclamation into Automatic

Reference Counting. In Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 153. Publication date: June 2024.

https://doi.org/10.1145/3453483.3454060

Concurrent Immediate Reference Counting 153:23

and Implementation (San Diego, CA, USA) (PLDI 2022). Association for Computing Machinery, New York, NY, USA,

61–75. https://doi.org/10.1145/3519939.3523730

David F. Bacon, Clement R. Attanasio, Han B. Lee, V. T. Rajan, and Stephen Smith. 2001. Java without the Coffee Breaks: A

Nonintrusive Multiprocessor Garbage Collector. In Proceedings of the ACM SIGPLAN 2001 Conference on Programming
Language Design and Implementation (Snowbird, Utah, USA) (PLDI ’01). Association for Computing Machinery, New

York, NY, USA, 92–103. https://doi.org/10.1145/378795.378819

Hans-Juergen Boehm and Mark Weiser. 1988. Garbage Collection in an Uncooperative Environment. 18, 9 (1988), 807–820.

https://doi.org/10.1002/spe.4380180902

Trevor Alexander Brown. 2015. Reclaiming Memory for Lock-Free Data Structures: There Has to Be a Better Way. In

Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing (Donostia-San Sebastián, Spain) (PODC
’15). Association for Computing Machinery, New York, NY, USA, 261–270. https://doi.org/10.1145/2767386.2767436

Nachshon Cohen and Erez Petrank. 2015. Automatic Memory Reclamation for Lock-Free Data Structures. In Proceedings of
the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications
(Pittsburgh, PA, USA) (OOPSLA 2015). Association for Computing Machinery, New York, NY, USA, 260–279. https:

//doi.org/10.1145/2814270.2814298

Andreia Correia, Pedro Ramalhete, and Pascal Felber. 2021. OrcGC: Automatic Lock-FreeMemory Reclamation. In Proceedings
of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (Virtual Event, Republic of Korea)
(PPoPP ’21). Association for ComputingMachinery, New York, NY, USA, 205–218. https://doi.org/10.1145/3437801.3441596

Crossbeam Developers. 2023. Crossbeam. https://github.com/crossbeam-rs/crossbeam

L. Peter Deutsch and Daniel G. Bobrow. 1976. An Efficient, Incremental, Automatic Garbage Collector. Commun. ACM 19, 9

(sep 1976), 522–526. https://doi.org/10.1145/360336.360345

Dave Dice, Hui Huang, and Mingyao Yang. 2001. Asymmetric Dekker Synchronization. http://web.archive.org/web/

20080220051535/http://blogs.sun.com/dave/resource/Asymmetric-Dekker-Synchronization.txt

Jason Evans. 2006. A scalable concurrent malloc (3) implementation for FreeBSD.

Keir Fraser. 2004. Practical lock-freedom. Ph. D. Dissertation. University of Cambridge, Computer Laboratory.

David Goldblatt. 2022. P1202R5: Asymmetric Fences. https://wg21.link/p1202r5.

Maurice Herlihy, Victor Luchangco, Paul Martin, and Mark Moir. 2005. Nonblocking Memory Management Support for

Dynamic-Sized Data Structures. ACM Trans. Comput. Syst. 23, 2 (may 2005), 146–196. https://doi.org/10.1145/1062247.

1062249

Jaehwang Jung, Jeonghyeon Kim, Matthew J. Parkinson, and Jeehoon Kang. 2024. Concurrent Immediate Reference Counting

(artifact and appendix). https://doi.org/10.5281/zenodo.10806736 Project webpage: https://cp.kaist.ac.kr/gc.

Yossi Levanoni and Erez Petrank. 2001. An On-the-Fly Reference Counting Garbage Collector for Java. In Proceedings of
the 16th ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications (Tampa Bay,

FL, USA) (OOPSLA ’01). Association for Computing Machinery, New York, NY, USA, 367–380. https://doi.org/10.1145/

504282.504309

P. E. McKenney and J. D. Slingwine. 1998. Read-copy update: Using execution history to solve concurrency problems. In

PDCS ’98.
Meta. 2023. Folly: Facebook Open-source Library. https://github.com/facebook/folly

Maged M. Michael. 2002a. High Performance Dynamic Lock-Free Hash Tables and List-Based Sets. In Proceedings of the
Fourteenth Annual ACM Symposium on Parallel Algorithms and Architectures (Winnipeg, Manitoba, Canada) (SPAA ’02).
Association for Computing Machinery, New York, NY, USA, 73–82. https://doi.org/10.1145/564870.564881

Maged M. Michael. 2002b. Safe Memory Reclamation for Dynamic Lock-Free Objects Using Atomic Reads and Writes. In

Proceedings of the Twenty-First Annual Symposium on Principles of Distributed Computing (Monterey, California) (PODC
’02). Association for Computing Machinery, New York, NY, USA, 21–30. https://doi.org/10.1145/571825.571829

Maged M. Michael. 2004. Hazard Pointers: Safe Memory Reclamation for Lock-Free Objects. IEEE Trans. Parallel Distrib.
Syst. 15, 6 (June 2004), 491–504. https://doi.org/10.1109/TPDS.2004.8

Maged M. Michael. 2020. Brief Announcement: Hazard Pointer Protection of Structures with Immutable Links. In Proceedings
of the 39th Symposium on Principles of Distributed Computing (Virtual Event, Italy) (PODC ’20). Association for Computing

Machinery, New York, NY, USA, 230–232. https://doi.org/10.1145/3382734.3405738

Maged M. Michael and Michael L. Scott. 1996. Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue

Algorithms. In Proceedings of the Fifteenth Annual ACM Symposium on Principles of Distributed Computing (Philadelphia,

Pennsylvania, USA) (PODC ’96). Association for Computing Machinery, New York, NY, USA, 267–275. https://doi.org/

10.1145/248052.248106

Aravind Natarajan and Neeraj Mittal. 2014. Fast Concurrent Lock-Free Binary Search Trees. In Proceedings of the 19th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (Orlando, Florida, USA) (PPoPP ’14). Association
for Computing Machinery, New York, NY, USA, 317–328. https://doi.org/10.1145/2555243.2555256

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 153. Publication date: June 2024.

https://doi.org/10.1145/3519939.3523730
https://doi.org/10.1145/378795.378819
https://doi.org/10.1002/spe.4380180902
https://doi.org/10.1145/2767386.2767436
https://doi.org/10.1145/2814270.2814298
https://doi.org/10.1145/2814270.2814298
https://doi.org/10.1145/3437801.3441596
https://github.com/crossbeam-rs/crossbeam
https://doi.org/10.1145/360336.360345
http://web.archive.org/web/20080220051535/http://blogs.sun.com/dave/resource/Asymmetric-Dekker-Synchronization.txt
http://web.archive.org/web/20080220051535/http://blogs.sun.com/dave/resource/Asymmetric-Dekker-Synchronization.txt
https://wg21.link/p1202r5
https://doi.org/10.1145/1062247.1062249
https://doi.org/10.1145/1062247.1062249
https://doi.org/10.5281/zenodo.10806736
https://cp.kaist.ac.kr/gc
https://doi.org/10.1145/504282.504309
https://doi.org/10.1145/504282.504309
https://github.com/facebook/folly
https://doi.org/10.1145/564870.564881
https://doi.org/10.1145/571825.571829
https://doi.org/10.1109/TPDS.2004.8
https://doi.org/10.1145/3382734.3405738
https://doi.org/10.1145/248052.248106
https://doi.org/10.1145/248052.248106
https://doi.org/10.1145/2555243.2555256

153:24 Jaehwang Jung, Jeonghyeon Kim, Matthew J. Parkinson, and Jeehoon Kang

Ruslan Nikolaev and Binoy Ravindran. 2021. Snapshot-Free, Transparent, and Robust Memory Reclamation for Lock-Free

Data Structures. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and
Implementation (Virtual, Canada) (PLDI 2021). Association for Computing Machinery, New York, NY, USA, 987–1002.

https://doi.org/10.1145/3453483.3454090

Matthew Parkinson, Dimitrios Vytiniotis, Kapil Vaswani, Manuel Costa, Pantazis Deligiannis, Dylan McDermott, Aaron

Blankstein, and Jonathan Balkind. 2017. Project Snowflake: Non-Blocking Safe Manual Memory Management in .NET.

Proc. ACM Program. Lang. 1, OOPSLA, Article 95 (oct 2017), 25 pages. https://doi.org/10.1145/3141879

Matthew J. Parkinson, Sylvan Clebsch, and Ben Simner. 2023. Wait-Free Weak Reference Counting. In Proceedings of the
2023 ACM SIGPLAN International Symposium on Memory Management (Orlando, FL, USA) (ISMM 2023). Association for

Computing Machinery, New York, NY, USA, 85–96. https://doi.org/10.1145/3591195.3595271

Pedro Ramalhete and Andreia Correia. 2017a. Brief Announcement: Hazard Eras - Non-Blocking Memory Reclamation. In

Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Architectures (Washington, DC, USA) (SPAA
’17). Association for Computing Machinery, New York, NY, USA, 367–369. https://doi.org/10.1145/3087556.3087588

Pedro Ramalhete and Andreia Correia. 2017b. DoubleLink - A Low-Overhead Lock-Free Queue. https://concurrencyfreaks.

blogspot.com/2017/01/doublelink-low-overhead-lock-free-queue.html

Rifat Shahriyar, Stephen M. Blackburn, and Kathryn S. McKinley. 2014. Fast conservative garbage collection. In Proceedings
of the 2014 ACM International Conference on Object Oriented Programming Systems Languages & Applications
(Portland, Oregon, USA) (OOPSLA ’14). Association for Computing Machinery, New York, NY, USA, 121–139. https:

//doi.org/10.1145/2660193.2660198

Nir N Shavit, Yosef Lev, and Maurice P Herlihy. 2011. Concurrent lock-free skiplist with wait-free contains operator.

https://patentcenter.uspto.gov/applications/12191008 US Patent 7,937,378.

Charles Tripp, David Hyde, and Benjamin Grossman-Ponemon. 2018. FRC: A High-Performance Concurrent Parallel

Deferred Reference Counter for C++. In Proceedings of the 2018 ACM SIGPLAN International Symposium on Memory
Management (Philadelphia, PA, USA) (ISMM 2018). Association for Computing Machinery, New York, NY, USA, 14–28.

https://doi.org/10.1145/3210563.3210569

HaosenWen, Joseph Izraelevitz, Wentao Cai, H. Alan Beadle, andMichael L. Scott. 2018. Interval-Based Memory Reclamation.

In Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (Vienna, Austria)

(PPoPP ’18). Association for Computing Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/3178487.3178488

Anthony Williams. 2019. C++ Concurrency in Action,2E (2 ed.). Manning Publications, New York, NY.

Albert Mingkun Yang and Tobias Wrigstad. 2017. Type-Assisted Automatic Garbage Collection for Lock-Free Data Structures.

In Proceedings of the 2017 ACM SIGPLAN International Symposium on Memory Management (Barcelona, Spain) (ISMM
2017). Association for Computing Machinery, New York, NY, USA, 14–24. https://doi.org/10.1145/3092255.3092274

Wenyu Zhao, Stephen M. Blackburn, and Kathryn S. McKinley. 2022. Low-Latency, High-Throughput Garbage Collection.

In Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation
(San Diego, CA, USA) (PLDI 2022). Association for Computing Machinery, New York, NY, USA, 76–91. https://doi.org/10.

1145/3519939.3523440

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 153. Publication date: June 2024.

https://doi.org/10.1145/3453483.3454090
https://doi.org/10.1145/3141879
https://doi.org/10.1145/3591195.3595271
https://doi.org/10.1145/3087556.3087588
https://concurrencyfreaks.blogspot.com/2017/01/doublelink-low-overhead-lock-free-queue.html
https://concurrencyfreaks.blogspot.com/2017/01/doublelink-low-overhead-lock-free-queue.html
https://doi.org/10.1145/2660193.2660198
https://doi.org/10.1145/2660193.2660198
https://patentcenter.uspto.gov/applications/12191008
https://doi.org/10.1145/3210563.3210569
https://doi.org/10.1145/3178487.3178488
https://doi.org/10.1145/3092255.3092274
https://doi.org/10.1145/3519939.3523440
https://doi.org/10.1145/3519939.3523440

Concurrent Immediate Reference Counting 153:25

A OPTIMIZATION FOR OBJECTS WITHOUTWEAK REFERENCES

Algorithm 4 CIRC with optimization for objects without weak references.

1: struct Object<T>
2: data: T
3: state: Atomic<uint64> // For simplicity, counts are merged into a single state word.
4: const DESTRUCTED, WEAKED // Bits indicating whether the object is destructed and whether it has ever

had a weak reference
5: const STRONG, WEAK // Bitmask for strong and weak counts
6: const COUNT, WEAK_COUNT // Bit representation of a single count
7: // Called from Rc::downgrade (the only case where weak is created first), Atomic<Weak>::load, Weak::clone.
8: function Object<T>::increment_weak(&self)
9: val← self.state.load()
10: while val & WEAKED = 0 do
11: match self.state.cas(val, (val | WEAKED) + WEAK_COUNT)
12: case Ok(_) then return
13: case Err(cur) then val← cur
14: if self.state.faa(WEAK_COUNT) & WEAK = 0 then
15: self.state.faa(WEAK_COUNT)
16: function Object<T>::decrement_weak(&self)
17: if self.state.faa(-WEAK_COUNT) & WEAK = WEAK_COUNT then
18: weakAD.defer(self, try_dealloc)
19: function try_destruct<T>(ptr: Object<T>*)
20: val← (*ptr).state.load()
21: loop
22: if val & STRONG > 0 then
23: (*ptr).decrement_strong(); return
24: match (*ptr).state.cas(val, val | DESTRUCTED)
25: case Err(cur) then val← cur
26: case OK(_) then
27: destruct(&(*ptr).data)
28: if val & WEAKED = 0 then free(ptr)
29: else (*ptr).decrement_weak()
30: return
31: function Object<T>::increment_strong(&self)→ bool
32: val← self.state.faa(COUNT)
33: if val & DESTRUCTED ≠ 0 then return false
34: if val & STRONG = 0 then self.state.faa(COUNT)
35: return true
36: function Object<T>::decrement_strong(&self)
37: if self.state.faa(-COUNT) & STRONG = COUNT then
38: strongAD.defer(self, try_destruct)
39: function Object<T>::is_destructed(&self)→ bool
40: val← self.state.load()
41: while val & (DESTRUCTED | STRONG) = 0 do
42: match self.state.cas(val, val + COUNT)
43: case OK(_) then return true
44: case Err(cur) then val← cur
45: return val & DESTRUCTED = 0

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 153. Publication date: June 2024.

153:26 Jaehwang Jung, Jeonghyeon Kim, Matthew J. Parkinson, and Jeehoon Kang

B AMD64T FULL EXPERIMENTAL RESULTS
B.1 Write-heavy & Small Key Ranges (1K for Lists and 100K for Others)

NR EBR HP CDRC-EBR CDRC-HP CIRC-EBR CIRC0-HP
1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HList/HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

2

4

6

8

10

12

14

16

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HMList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

20

40

60

80

100

120

140

160

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

20

40

60

80

Th
ro

ug
hp

ut
 (M

 o
p/

s)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

10

20

30

40

50

60

70

Th
ro

ug
hp

ut
 (M

 o
p/

s)

SkipList

Fig. 9. Throughput (million operations per second) of write-heavy workloads for a varying number of threads
with small key ranges.

NR EBR HP CDRC-EBR CDRC-HP CIRC-EBR CIRC0-HP

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

20

40

60

80

100

120

140

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HList/HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

20

40

60

80

100

120

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HMList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

0.1

0.2

0.3

0.4

0.5

Pe
ak

 m
em

or
y

us
ag

e
(G

iB
)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pe
ak

 m
em

or
y

us
ag

e
(G

iB
)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

2

4

6

8

Pe
ak

 m
em

or
y

us
ag

e
(G

iB
)

SkipList

Fig. 10. Peak number of memory usage of write-heavy workloads for a varying number of threads with small
key ranges.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 153. Publication date: June 2024.

Concurrent Immediate Reference Counting 153:27

B.2 Write-heavy & Large Key Ranges (10K for Lists and 100M for Others)

NR EBR HP CDRC-EBR CDRC-HP CIRC-EBR CIRC0-HP

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HList/HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HMList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

5

10

15

20

25

Th
ro

ug
hp

ut
 (M

 o
p/

s)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Th
ro

ug
hp

ut
 (M

 o
p/

s)

SkipList

Fig. 11. Throughput (million operations per second) of write-heavy workloads for a varying number of threads
with large key ranges.

NR EBR HP CDRC-EBR CDRC-HP CIRC-EBR CIRC0-HP

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

10

20

30

40

50

60

70

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HList/HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

10

20

30

40

50

60

70

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HMList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

1.18

1.19

1.20

1.21

1.22

1.23

Pe
ak

 m
em

or
y

us
ag

e
(G

iB
)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

3.5

4.0

4.5

5.0

5.5

6.0

Pe
ak

 m
em

or
y

us
ag

e
(G

iB
)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

12.0

12.5

13.0

13.5

14.0

14.5

Pe
ak

 m
em

or
y

us
ag

e
(G

iB
)

SkipList

Fig. 12. Peak number of memory usage of write-heavy workloads for a varying number of threads with large
key ranges.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 153. Publication date: June 2024.

153:28 Jaehwang Jung, Jeonghyeon Kim, Matthew J. Parkinson, and Jeehoon Kang

B.3 Read-write & Small Key Ranges (1K for Lists and 100K for Others)

NR EBR HP CDRC-EBR CDRC-HP CIRC-EBR CIRC0-HP

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

5

10

15

20

25

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

5

10

15

20

25

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HMList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

5

10

15

20

25

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

25

50

75

100

125

150

175

200

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

20

40

60

80

100

Th
ro

ug
hp

ut
 (M

 o
p/

s)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

20

40

60

80

Th
ro

ug
hp

ut
 (M

 o
p/

s)

SkipList

Fig. 13. Throughput (million operations per second) of read-write workloads for a varying number of threads
with small key ranges.

NR EBR HP CDRC-EBR CDRC-HP CIRC-EBR CIRC0-HP

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

20

40

60

80

100

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

20

40

60

80

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HMList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

20

40

60

80

100

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Pe
ak

 m
em

or
y

us
ag

e
(G

iB
)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

0.1

0.2

0.3

0.4

0.5

Pe
ak

 m
em

or
y

us
ag

e
(G

iB
)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

1

2

3

4

5

6

Pe
ak

 m
em

or
y

us
ag

e
(G

iB
)

SkipList

Fig. 14. Peak number of memory usage of read-write workloads for a varying number of threads with small
key ranges.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 153. Publication date: June 2024.

Concurrent Immediate Reference Counting 153:29

B.4 Read-write & Large Key Ranges (10K for Lists and 100M for Others)

NR EBR HP CDRC-EBR CDRC-HP CIRC-EBR CIRC0-HP

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HMList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

1

2

3

4

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

5

10

15

20

25

Th
ro

ug
hp

ut
 (M

 o
p/

s)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Th
ro

ug
hp

ut
 (M

 o
p/

s)

SkipList

Fig. 15. Throughput (million operations per second) of read-write workloads for a varying number of threads
with large key ranges.

NR EBR HP CDRC-EBR CDRC-HP CIRC-EBR CIRC0-HP

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

20

40

60

80

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

20

40

60

80

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HMList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

20

40

60

80

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

1.18

1.19

1.20

1.21

1.22

Pe
ak

 m
em

or
y

us
ag

e
(G

iB
)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

3.5

4.0

4.5

5.0

5.5

Pe
ak

 m
em

or
y

us
ag

e
(G

iB
)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

11.75

12.00

12.25

12.50

12.75

13.00

13.25

13.50

13.75

Pe
ak

 m
em

or
y

us
ag

e
(G

iB
)

SkipList

Fig. 16. Peak number of memory usage of read-write workloads for a varying number of threads with large
key ranges.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 153. Publication date: June 2024.

153:30 Jaehwang Jung, Jeonghyeon Kim, Matthew J. Parkinson, and Jeehoon Kang

B.5 Read-most & Small Key Ranges (1K for Lists and 100K for Others)

NR EBR HP CDRC-EBR CDRC-HP CIRC-EBR CIRC0-HP

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

10

20

30

40

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

10

20

30

40
Th

ro
ug

hp
ut

 (M
 o

p/
s)

HMList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

10

20

30

40

50

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

50

100

150

200

250

300

350

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

20

40

60

80

100

120

140

160

Th
ro

ug
hp

ut
 (M

 o
p/

s)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

20

40

60

80

100

120

Th
ro

ug
hp

ut
 (M

 o
p/

s)

SkipList

Fig. 17. Throughput (million operations per second) of read-most workloads for a varying number of threads
with small key ranges.

NR EBR HP CDRC-EBR CDRC-HP CIRC-EBR CIRC0-HP

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

10

20

30

40

50

60

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

10

20

30

40

50

60

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HMList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

10

20

30

40

50

60

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Pe
ak

 m
em

or
y

us
ag

e
(G

iB
)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Pe
ak

 m
em

or
y

us
ag

e
(G

iB
)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Pe
ak

 m
em

or
y

us
ag

e
(G

iB
)

SkipList

Fig. 18. Peak number of memory usage of read-most workloads for a varying number of threads with small
key ranges.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 153. Publication date: June 2024.

Concurrent Immediate Reference Counting 153:31

B.6 Read-most & Large Key Ranges (10K for Lists and 100M for Others)

NR EBR HP CDRC-EBR CDRC-HP CIRC-EBR CIRC0-HP

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HMList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

5

10

15

20

25

30

Th
ro

ug
hp

ut
 (M

 o
p/

s)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

5

10

15

20

Th
ro

ug
hp

ut
 (M

 o
p/

s)

SkipList

Fig. 19. Throughput (million operations per second) of read-most workloads for a varying number of threads
with large key ranges.

NR EBR HP CDRC-EBR CDRC-HP CIRC-EBR CIRC0-HP

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

10

20

30

40

50

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

10

20

30

40

50

60

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HMList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

10

20

30

40

50

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

1.18

1.19

1.20

1.21

1.22

Pe
ak

 m
em

or
y

us
ag

e
(G

iB
)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

3.6

3.8

4.0

4.2

4.4

4.6

4.8

5.0

Pe
ak

 m
em

or
y

us
ag

e
(G

iB
)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

11.8

11.9

12.0

12.1

12.2

12.3

Pe
ak

 m
em

or
y

us
ag

e
(G

iB
)

SkipList

Fig. 20. Peak number of memory usage of read-most workloads for a varying number of threads with large
key ranges.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 153. Publication date: June 2024.

153:32 Jaehwang Jung, Jeonghyeon Kim, Matthew J. Parkinson, and Jeehoon Kang

B.7 DoubleLink

NR EBR CDRC-EBR CIRC-EBR CDRC-EBR-Flush

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

2

4

6

8

10

12

Th
ro

ug
hp

ut
 (M

 o
p/

s)

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.4

0.6

0.8

1.0

1.2

Th
ro

ug
hp

ut
 ra

tio
 to

 R
CU

Fig. 21. Throughput (million operations per second) of DoubleLink workloads for a varying number of threads.

NR EBR CDRC-EBR CIRC-EBR CDRC-EBR-Flush

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

2

4

6

8

10

12

14

Pe
ak

 m
em

or
y

us
ag

e
(G

iB
)

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

5000

10000

15000

20000

25000

30000

Pe
ak

 m
em

or
y

us
ag

e
ra

tio
 to

 R
CU

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

100

101

102

103

104
Pe

ak
 m

em
or

y
us

ag
e

ra
tio

 to
 R

CU

Fig. 22. Peak number of memory usage of DoubleLink workloads for a varying number of threads.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 153. Publication date: June 2024.

Concurrent Immediate Reference Counting 153:33

C INTEL96T FULL EXPERIMENTAL RESULTS
C.1 Write-heavy & Small Key Ranges (1K for Lists and 100K for Others)

NR EBR HP CDRC-EBR CDRC-HP CIRC-EBR CIRC0-HP

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

5

10

15

20

25

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HList/HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HMList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

50

100

150

200

250

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

20

40

60

80

100

120

Th
ro

ug
hp

ut
 (M

 o
p/

s)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

10

20

30

40

50

60

70

80

Th
ro

ug
hp

ut
 (M

 o
p/

s)

SkipList

Fig. 23. Throughput (million operations per second) of write-heavy workloads for a varying number of threads
with small key ranges.

NR EBR HP CDRC-EBR CDRC-HP CIRC-EBR CIRC0-HP

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

25

50

75

100

125

150

175

200

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HList/HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

20

40

60

80

100

120

140

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HMList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pe
ak

 m
em

or
y

us
ag

e
(G

iB
)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0.0

0.2

0.4

0.6

0.8

Pe
ak

 m
em

or
y

us
ag

e
(G

iB
)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

2

4

6

8

10

Pe
ak

 m
em

or
y

us
ag

e
(G

iB
)

SkipList

Fig. 24. Peak number of memory usage of write-heavy workloads for a varying number of threads with small
key ranges.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 153. Publication date: June 2024.

153:34 Jaehwang Jung, Jeonghyeon Kim, Matthew J. Parkinson, and Jeehoon Kang

C.2 Write-heavy & Large Key Ranges (10K for Lists and 100M for Others)

NR EBR HP CDRC-EBR CDRC-HP CIRC-EBR CIRC0-HP

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

1

2

3

4

5

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HList/HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

1

2

3

4

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HMList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

5

10

15

20

25

Th
ro

ug
hp

ut
 (M

 o
p/

s)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Th
ro

ug
hp

ut
 (M

 o
p/

s)

SkipList

Fig. 25. Throughput (million operations per second) of write-heavy workloads for a varying number of threads
with large key ranges.

NR EBR HP CDRC-EBR CDRC-HP CIRC-EBR CIRC0-HP

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

20

40

60

80

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HList/HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

20

40

60

80

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HMList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

1.18

1.20

1.22

1.24

1.26

Pe
ak

 m
em

or
y

us
ag

e
(G

iB
)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

3.5

4.0

4.5

5.0

5.5

6.0

Pe
ak

 m
em

or
y

us
ag

e
(G

iB
)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

12.0

12.5

13.0

13.5

14.0

14.5

Pe
ak

 m
em

or
y

us
ag

e
(G

iB
)

SkipList

Fig. 26. Peak number of memory usage of write-heavy workloads for a varying number of threads with large
key ranges.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 153. Publication date: June 2024.

Concurrent Immediate Reference Counting 153:35

C.3 Read-write & Small Key Ranges (1K for Lists and 100K for Others)

NR EBR HP CDRC-EBR CDRC-HP CIRC-EBR CIRC0-HP

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

5

10

15

20

25

30

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

5

10

15

20

25

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HMList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

5

10

15

20

25

30

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

50

100

150

200

250

300

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

20

40

60

80

100

120

140

Th
ro

ug
hp

ut
 (M

 o
p/

s)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

20

40

60

80

100

Th
ro

ug
hp

ut
 (M

 o
p/

s)

SkipList

Fig. 27. Throughput (million operations per second) of read-write workloads for a varying number of threads
with small key ranges.

NR EBR HP CDRC-EBR CDRC-HP CIRC-EBR CIRC0-HP

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

20

40

60

80

100

120

140

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

20

40

60

80

100

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HMList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

20

40

60

80

100

120

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0.0

0.1

0.2

0.3

0.4

0.5

Pe
ak

 m
em

or
y

us
ag

e
(G

iB
)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pe
ak

 m
em

or
y

us
ag

e
(G

iB
)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

1

2

3

4

5

6

7

Pe
ak

 m
em

or
y

us
ag

e
(G

iB
)

SkipList

Fig. 28. Peak number of memory usage of read-write workloads for a varying number of threads with small
key ranges.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 153. Publication date: June 2024.

153:36 Jaehwang Jung, Jeonghyeon Kim, Matthew J. Parkinson, and Jeehoon Kang

C.4 Read-write & Large Key Ranges (10K for Lists and 100M for Others)

NR EBR HP CDRC-EBR CDRC-HP CIRC-EBR CIRC0-HP

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

1

2

3

4

5

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

1

2

3

4

5

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HMList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

1

2

3

4

5

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

5

10

15

20

25

Th
ro

ug
hp

ut
 (M

 o
p/

s)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Th
ro

ug
hp

ut
 (M

 o
p/

s)

SkipList

Fig. 29. Throughput (million operations per second) of read-write workloads for a varying number of threads
with large key ranges.

NR EBR HP CDRC-EBR CDRC-HP CIRC-EBR CIRC0-HP

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

20

40

60

80

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

20

40

60

80

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HMList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

20

40

60

80

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

1.17

1.18

1.19

1.20

1.21

1.22

1.23

1.24

1.25

Pe
ak

 m
em

or
y

us
ag

e
(G

iB
)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

3.5

4.0

4.5

5.0

5.5

Pe
ak

 m
em

or
y

us
ag

e
(G

iB
)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

11.75

12.00

12.25

12.50

12.75

13.00

13.25

13.50

13.75

Pe
ak

 m
em

or
y

us
ag

e
(G

iB
)

SkipList

Fig. 30. Peak number of memory usage of read-write workloads for a varying number of threads with large
key ranges.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 153. Publication date: June 2024.

Concurrent Immediate Reference Counting 153:37

C.5 Read-most & Small Key Ranges (1K for Lists and 100K for Others)

NR EBR HP CDRC-EBR CDRC-HP CIRC-EBR CIRC0-HP

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

10

20

30

40

50

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

10

20

30

40
Th

ro
ug

hp
ut

 (M
 o

p/
s)

HMList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

10

20

30

40

50

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

100

200

300

400

500

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

25

50

75

100

125

150

175

200

Th
ro

ug
hp

ut
 (M

 o
p/

s)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

20

40

60

80

100

120

140

Th
ro

ug
hp

ut
 (M

 o
p/

s)

SkipList

Fig. 31. Throughput (million operations per second) of read-most workloads for a varying number of threads
with small key ranges.

NR EBR HP CDRC-EBR CDRC-HP CIRC-EBR CIRC0-HP

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

20

40

60

80

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

20

40

60

80

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HMList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

20

40

60

80

100

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0.00

0.05

0.10

0.15

0.20

0.25

Pe
ak

 m
em

or
y

us
ag

e
(G

iB
)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Pe
ak

 m
em

or
y

us
ag

e
(G

iB
)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0.0

0.5

1.0

1.5

2.0

Pe
ak

 m
em

or
y

us
ag

e
(G

iB
)

SkipList

Fig. 32. Peak number of memory usage of read-most workloads for a varying number of threads with small
key ranges.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 153. Publication date: June 2024.

153:38 Jaehwang Jung, Jeonghyeon Kim, Matthew J. Parkinson, and Jeehoon Kang

C.6 Read-most & Large Key Ranges (10K for Lists and 100M for Others)

NR EBR HP CDRC-EBR CDRC-HP CIRC-EBR CIRC0-HP

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

1

2

3

4

5

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

1

2

3

4

5
Th

ro
ug

hp
ut

 (M
 o

p/
s)

HMList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

1

2

3

4

5

6

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

5

10

15

20

25

30

Th
ro

ug
hp

ut
 (M

 o
p/

s)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

5

10

15

20

Th
ro

ug
hp

ut
 (M

 o
p/

s)

SkipList

Fig. 33. Throughput (million operations per second) of read-most workloads for a varying number of threads
with large key ranges.

NR EBR HP CDRC-EBR CDRC-HP CIRC-EBR CIRC0-HP

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

20

40

60

80

100

120

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

20

40

60

80

100

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HMList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

20

40

60

80

100

120

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

1.17

1.18

1.19

1.20

1.21

1.22

1.23

1.24

Pe
ak

 m
em

or
y

us
ag

e
(G

iB
)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

3.6

3.8

4.0

4.2

4.4

4.6

4.8

5.0

Pe
ak

 m
em

or
y

us
ag

e
(G

iB
)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

11.8

11.9

12.0

12.1

12.2

12.3

Pe
ak

 m
em

or
y

us
ag

e
(G

iB
)

SkipList

Fig. 34. Peak number of memory usage of read-most workloads for a varying number of threads with large
key ranges.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 153. Publication date: June 2024.

Concurrent Immediate Reference Counting 153:39

C.7 DoubleLink

NR EBR CDRC-EBR CIRC-EBR CDRC-EBR-Flush

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

1

2

3

4

5

6

7

8

Th
ro

ug
hp

ut
 (M

 o
p/

s)

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Th
ro

ug
hp

ut
 ra

tio
 to

 R
CU

Fig. 35. Throughput (million operations per second) of DoubleLink workloads for a varying number of threads.

NR EBR CDRC-EBR CIRC-EBR CDRC-EBR-Flush

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

2

4

6

8

10

Pe
ak

 m
em

or
y

us
ag

e
(G

iB
)

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

5000

10000

15000

20000

25000

Pe
ak

 m
em

or
y

us
ag

e
ra

tio
 to

 R
CU

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

100

101

102

103

104
Pe

ak
 m

em
or

y
us

ag
e

ra
tio

 to
 R

CU

Fig. 36. Peak number of memory usage of DoubleLink workloads for a varying number of threads.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 153. Publication date: June 2024.

153:40 Jaehwang Jung, Jeonghyeon Kim, Matthew J. Parkinson, and Jeehoon Kang

Received 2023-11-16; accepted 2024-03-31

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 153. Publication date: June 2024.

	Abstract
	1 Introduction
	1.1 Problems of Deferral-Based Methods
	1.2 Our Solution for Fast and Safe Recursive Reclamation

	2 Background
	2.1 Manual Concurrent Reclamation Schemes
	2.2 Basics of Deferral-Based Concurrent Reference Counting

	3 Immediate Decrement
	4 Immediate Recursive Destruction
	4.1 Key Idea
	4.2 An Efficient Epoch-Based Algorithm

	5 Supporting Weak References
	6 Experimental Evaluation
	7 Related and Future Work
	Acknowledgments
	References
	A Optimization for Objects without Weak References
	B AMD64T Full Experimental Results
	B.1 Write-heavy & Small Key Ranges (1K for Lists and 100K for Others)
	B.2 Write-heavy & Large Key Ranges (10K for Lists and 100M for Others)
	B.3 Read-write & Small Key Ranges (1K for Lists and 100K for Others)
	B.4 Read-write & Large Key Ranges (10K for Lists and 100M for Others)
	B.5 Read-most & Small Key Ranges (1K for Lists and 100K for Others)
	B.6 Read-most & Large Key Ranges (10K for Lists and 100M for Others)
	B.7 DoubleLink

	C Intel96T Full Experimental Results
	C.1 Write-heavy & Small Key Ranges (1K for Lists and 100K for Others)
	C.2 Write-heavy & Large Key Ranges (10K for Lists and 100M for Others)
	C.3 Read-write & Small Key Ranges (1K for Lists and 100K for Others)
	C.4 Read-write & Large Key Ranges (10K for Lists and 100M for Others)
	C.5 Read-most & Small Key Ranges (1K for Lists and 100K for Others)
	C.6 Read-most & Large Key Ranges (10K for Lists and 100M for Others)
	C.7 DoubleLink

