
Leveraging Immutability to Validate Hazard Pointers for
Optimistic Traversals
JANGGUN LEE, KAIST, Korea
JEONGHYEON KIM, KAIST, Korea
JEEHOON KANG, KAIST, Korea

Hazard pointers (HP) is one of the earliest manual memory reclamation algorithms for concurrent data

structures. It is widely used for its robustness: memory overhead is bounded (e.g., by the number of threads).

To access a node, threads first announce the protection of each to-be-accessed node, which prevents its

reclamation. After announcement, they validate the node’s reachability from the root to ensure that no threads

have missed the announcement and reclaimed it. Traversal-based data structures typically use a marking-based

validation strategy. This strategy uses a node’s mark to indicate whether the node is to be detached. Unmarked

nodes are considered safe to traverse as both the node and its successors are still reachable, while marked

nodes are considered unsafe. However, this strategy is inapplicable to the efficient optimistic traversal strategy
that skips over marked nodes.

We propose a new validation strategy for HP that supports lock-free data structures with optimistic traversal,

such as lists, trees, and skip lists. The key idea is to exploit the immutability of marked nodes, and validate

their reachability at once by checking the reachability of themost recent unmarked node. To ensure correctness,
we prove the safety of Harris’s list protected with the new strategy in Rocq using the Iris separation logic

framework. We show that the new strategy’s performance is competitive with state-of-the-art reclamation

algorithms when applied to data structures with optimistic traversal, while remaining simple and robust.

CCS Concepts: • Computing methodologies→ Concurrent algorithms; • Software and its engineering
→ Garbage collection; • Theory of computation→ Program verification.

Additional Key Words and Phrases: concurrent memory reclamation, hazard pointers, concurrent data struc-

tures

ACM Reference Format:
Janggun Lee, Jeonghyeon Kim, and Jeehoon Kang. 2025. Leveraging Immutability to Validate Hazard Pointers

for Optimistic Traversals. Proc. ACM Program. Lang. 9, PLDI, Article 148 (June 2025), 37 pages. https://doi.org/
10.1145/3729247

1 Introduction
Concurrent data structures allow multiple clients to access shared memory simultaneously, provid-

ing high performance. For these data structures, memory management is challenging because it is

difficult to determine when memory is no longer accessed by all threads and thus safe to free.

To aid memory management for concurrent data structures, several manual reclamation algo-

rithms have been proposed [4, 23, 26, 28, 33, 36, 41–44, 46, 48, 51, 54]. When using such algorithms,

memory nodes go through the following life cycle. First, a node is allocated, initialized, and placed

in a shared data structure. Second, it is detached by making it unreachable from the data structure

root. Third, it is retired by calling the algorithm-provided retire function, scheduling its reclamation.

Authors’ Contact Information: Janggun Lee, KAIST, Daejeon, Korea, janggun.lee@kaist.ac.kr; Jeonghyeon Kim, KAIST,

Daejeon, Korea, jeonghyeon.kim@kaist.ac.kr; Jeehoon Kang, KAIST, Daejeon, Korea, jeehoon.kang@kaist.ac.kr.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 Copyright held by the owner/author(s).

ACM 2475-1421/2025/6-ART148

https://doi.org/10.1145/3729247

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 148. Publication date: June 2025.

HTTPS://ORCID.ORG/0009-0002-0047-7717
HTTPS://ORCID.ORG/0009-0000-7070-3578
HTTPS://ORCID.ORG/0000-0002-2115-0871
https://doi.org/10.1145/3729247
https://doi.org/10.1145/3729247
https://orcid.org/0009-0002-0047-7717
https://orcid.org/0009-0000-7070-3578
https://orcid.org/0000-0002-2115-0871
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3729247

148:2 Janggun Lee, Jeonghyeon Kim, and Jeehoon Kang

Finally, it is reclaimed by the reclamation algorithm by giving it back to the memory allocator.

For safety, a node must not be reclaimed while accessible. Clients ensure this by protecting a node

before accessing it, preventing reclamation by other threads.

Hazard pointers (HP). HP [35, 36] is one of the earliest reclamation algorithms. HP is widely used

for its robustness: the number of retired but unreclaimed nodes is bounded (e.g., by the number of

threads or a fixed constant).
1
To ensure robustness, a thread announces the protection of each to-

be-accessed node to prevent its reclamation so that other threads will not reclaim the node until the

announcement is revoked. In contrast to HPwith such per-pointer and fine-grained protection, some

reclamation algorithms such as read-copy-update (RCU) [33] employ coarse-grained protection

mechanisms for efficient synchronization, trading robustness for performance.

An announcement of protection, however, is insufficient to ensure safe access to a node. To see

why, suppose a thread (1) obtains a node 𝑝 to access, and (2) announces the protection of 𝑝 . As (1)
and (2) are not atomic, a reclaiming thread may retire and reclaim 𝑝 between (1) and (2). Therefore,
after (2), the protecting thread should validate that 𝑝 has not been retired before accessing it.

For real-world concurrent data structures, it is often difficult to determine whether a node has

been retired for validation [23]. Thus, it is common to conservatively check whether the node is

still reachable from the data structure root. If the node is reachable, it has not yet been retired, as

nodes should only be retired after being detached from the data structure.

For traversal-based data structures, it is often more efficient to further over-approximate unreach-

ability for validation, because precise reachability analysis may require a potentially long traversal

from the root. The standard over-approximation strategy for unreachability, which we call Valmark ,

is based on a node’s mark: a node is first marked as to be detached from the data structure [16].

For example, when moving from node 𝑛 to the next node𝑚, the protecting thread checks if 𝑛 is

marked. If 𝑛 is unmarked, it is reachable, and so must be𝑚, which validates the protection of𝑚. If

𝑛 is marked, it might have been detached, and so might𝑚, failing to validate the protection of𝑚.

Even without reclamation, marking is essential for the correctness of data structures to ensure that

a detached node cannot create a new link to a live node, preventing the live node from getting lost.

Limitations of prior approaches to applying HP to optimistic traversals. The Valmark strategy

is inapplicable to the efficient optimistic traversal strategy common in traversal-based data structures

such as linked lists and trees [3, 10, 16, 20, 39, 45, 47, 52]. In optimistic traversals, when a thread

encounters a marked (hence to-be-detached) node, it skips over to the next node for performance.

In contrast, Valmark requires the current node to be unmarked or it will restart.

As a result, data structures protected using HP with Valmark are often outperformed by those

using optimistic traversal [6]. For example, Harris [16]’s list is one of the earliest concurrent data

structures that employs optimistic traversal. Michael [35] argues that Valmark is incompatible with

Harris’s list, leading Michael [34] to adapt it to Valmark by sacrificing optimistic traversal.

While prior research has explored the application of HP to optimistic traversals, these approaches

have either exhibited inefficiency [4] or been restricted to specific data structures [20, 36, 37]. For

example, Michael [35] presents a version of Michael and Scott [38]’s lock-free queue that uses HP,

but its optimistic traversal consists of a single step, while optimistic traversal in Harris’s list and

other data structures in general require unbounded number of steps (see §2.4 for other examples).

Immutability-based validation for optimistic traversals. To efficiently apply HP to optimistic

traversal, we propose an immutability based validation strategy, which we call Valimmut . In particular,

we exploit the fact that in traversal-based data structures, a marked node’s outgoing pointer fields

1
For a full definition, see [50].

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 148. Publication date: June 2025.

Leveraging Immutability to Validate Hazard Pointers for Optimistic Traversals 148:3

Announced
Check

reachability

Marked

for detach

Reachable

by immutability

𝑑𝑏𝑎 𝑐ℎ

Fig. 1. Successful validation of 𝑑 by reading from most recent unmarked node 𝑎. 𝑏 is reachable as 𝑎 is
unmarked and points to 𝑏. 𝑏’s next node is reachable, and as it is immutable, the next node is 𝑐 ; and 𝑑 is
reachable by the same reasoning.

never change. Our strategy is broadly applicable as immutability is essential for the correctness of

traversal-based data structures [16], i.e., to prove linearizability [18] (see §3.4 for more details).

By leveraging immutability, a thread can validate from amarked node by checking the reachability

of the most recent unmarked node, allowing traversal to continue, as illustrated in Fig. 1. A thread

has traversed unmarked node 𝑎 and marked nodes 𝑏 and 𝑐 , and wishes to step from 𝑐 to 𝑑 . To

validate the protection of 𝑑 , the thread checks that 𝑎 is still unmarked and points to 𝑏. If so, since 𝑎

is unmarked, it is reachable, and 𝑏 is reachable because 𝑎 points to it. Next, 𝑐 is reachable because 𝑏

is immutable and its next node was 𝑐 , and 𝑑 is reachable for the same reason. Thus, the protection

of 𝑑 is validated.

Outline. Throughout this paper, we elaborate on our key contribution, namely utilizing immutabil-

ity to apply HP to concurrent data structures with optimistic traversal. Specifically:

• In §2, we review the technical background of HP and the marking-based validation strategy

Valmark using Harris [16]’s and Michael [34]’s lock-free lists as running examples.

• In §3, we apply HP with the immutability based validation strategy Valimmut to representative

concurrent data structures with optimistic traversal, in particular to Harris [16]’s linked list,

Natarajan and Mittal [39]’s binary tree, and Shavit et al. [47]’s skiplist, and discuss the broad

applicability of Valimmut .

• In §4, we formally verify the safety of Harris’s list using HP with Valimmut in Rocq (formerly

Coq) using the Iris separation logic framework [24, 25, 29].

• In §5, we evaluate the performance of HP with Valimmut against various state-of-the-art reclama-

tion algorithms [2, 21, 23, 26, 28, 48] on various workloads. We observe that HP with Valimmut
benefits greatly from optimistic traversal, and is competitive with other reclamation algorithms.

• In §6, we conclude with related and future work.

• In the supplementary material [30], we present all of our proofs and experimental results.

2 Background and Motivation
We review HP (§2.1) and its application using Valmark to Michael’s list

2
(§2.2); explain why HP with

Valmark is inapplicable to Harris’s list with optimistic traversal (§2.3); and discuss prior approaches

to applying HP to optimistic traversal (§2.4).

2.1 Hazard Pointers
Algorithm 1 outlines the high-level structure of HP. When a thread wants to access a pointer, say 𝑝 ,

it first announces the protection of 𝑝 by storing it in an HP slot (line 2). To validate the protection,

the thread checks that 𝑝 has not been retired at the time of announcement (line 3). Conversely,

2
We discuss Michael’s list before Harris’s list despite the historical order for presentation purposes.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 148. Publication date: June 2025.

148:4 Janggun Lee, Jeonghyeon Kim, and Jeehoon Kang

Algorithm 1 Hazard pointers algorithm sketch.

1: fun Protect(𝑝)
2: Set 𝑝 to a thread-local hazard pointer slot.

3: Check if 𝑝 is not retired. If retired, fail.

4: fun Reclaim(𝑝)
5: Announce retirement of 𝑝 .

6: Check if 𝑝 is protected. If protected, retry later.

when a thread wants to reclaim 𝑝 , it first announces the retirement of 𝑝 (line 5), then checks if any

thread is protecting the node (line 6), and if not, frees 𝑝 .

The safety of HP is proven through a simple case analysis of the execution order. If line 5 happens

before line 3, the protection will fail, and no access will occur. If line 2 happens before line 6, and

no reclamation will occur. In either case, no use-after-free will occur.

As discussed in §1, it is more efficient to over-approximate the check for retirement at line 3

with unreachability, and for traversal-based data structures, even further with marking.

2.2 Applying Hazard Pointers using Valmark to Michael’s List
We elaborate on the over-approximation for validation in Valmark using Michael [34]’s list as an

example, a lock-free singly linked list that implements a set data structure and supports the insertion

and removal of nodes at any position.
3

Fig. 2 illustrates the traversal of Michael’s list. Code related to HP (shaded in purple) will be

explained below. Each Node consists of an integer key and an atomic pointer next containing a

pointer to the next node. Micheal’s list is represented with an atomic pointer to Node, initialized to

NULL. Operations on atomic pointers are given as explicit methods (e.g., n.load() to atomically read

from n). A key feature of this list is marking [16]. When a thread wants to detach a node, it first

marks the node by tagging the least significant bit (LSB) of the next pointer field as 1.
4
Marking

removes a node from the abstract set
5
, but the node remains reachable from the head node. In

the diagrams, outgoing edges represent the next pointer field of each node, with dashed edges

indicating a pointer field with tag value 1.
The main interface for the list is Get, Insert, and Remove operations. Each of these functions

takes a list and a key as input, and returns a boolean that indicates the oepration’s success. The

implementation of each operation first calls Search to locate the relevant position within the list,

and may modify the list depending on whether the key was found or not. For Get, it simply returns

whether the key was found or not. For Insert, when key is not found, it inserts a new node with

key between prev and curr with a compare-and-swap (CAS) (line 33). For Remove, when key is

found, it removes curr in two CASs. First, it marks curr by changing next’s LSB (line 42) from 0 to

1, with the help of decomp function that splits a pointer into an aligned pointer and its tag ensure

next is aligned. Second, it detaches curr by changing prev’s next from curr to next (line 43).
The goal of Search(list,key) is to traverse list and return a triple (prev, curr, found), where (1) prev

is a reference to a next field of a Node that has a key less than the target key; (2) curr is a pointer
to the node obtained from prev; and (3) found is a boolean that indicates if the key in curr equals
key or is greater than key. The traversing thread begins by initializing prev to list and curr to the

first node (line 7). It then enters a loop with the invariant that curr was loaded from prev in the last

iteration and that its tag is 0 (line 9). Inside the loop, it first sets next to curr’s next node and tag to

3
We implement a set for simplicity. It is straightforward to extend the list to a map.

4
We assume pointers are 8-byte aligned and the last 3 bits are available for tagging.

5
In other words, the removal operation is linearized [18] when the node is marked.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 148. Publication date: June 2025.

Leveraging Immutability to Validate Hazard Pointers for Optimistic Traversals 148:5

Announced Protected Check reachabilityTagged

1: struct Node
2: key: int | next: Atomic<Node*>

3: thread-local variables
4: hp_prev, hp_curr: HSlot

5: fun Search(list: &Atomic<Node*>, key: int)
→ (&Atomic<Node*>, Node*, bool)

6: restart:
7: prev← list; curr← prev.load()
8: found← false
9: while curr ≠ null do
10: hp_curr.set(curr)
11: if prev.load() ≠ curr then goto restart
12: (next, tag)← decomp((*curr).next.load())
13: if tag = 1 then
14: detach curr; goto restart
15: else
16: if (*curr).key ≥ key then
17: found← (*curr).key = key; break
18: prev← &(*curr).next
19: hp_swap(&hp_curr, &hp_prev)
20: curr← next
21: end while
22: return (prev, curr, found)

23: fun Get(list: &Atomic<Node*>, key: int)→ bool
24: return Search(list, key).2

25: fun Insert(list: &Atomic<Node*>, key: int)
→ bool

26: new← new_node(key)
27: loop
28: (prev, curr, found)← Search(list, key)
29: if found then
30: reclaim_node(new)
31: return false

32: (*new).next.store(curr)
33: if prev.cas(curr, new) then
34: return true
35: end loop

36: fun Remove(list: &Atomic<Node*>, key: int)
→ bool

37: loop
38: (prev, curr, found)← Search(list, key)
39: if !found then
40: return false
41: (next, _)← decomp((*curr).next.load())
42: if (*curr).next.cas(next, next | 0b1) then
43: if prev.cas(curr, next) then
44: retire(curr)
45: return true
46: end loop

47: fun decomp(ptr: Node*)→ (Node*, int)
48: return (ptr & ∼0b111, ptr & 0b111)

𝑝 𝑐ℎ 𝑟

(a) Line 10, announce protection.

𝑝 𝑐ℎ 𝑟

(b) Line 11, validation.

𝑝 𝑐ℎ 𝑟

(c) Line 11, successful validation.

𝑝 𝑐ℎ 𝑟

(d) Line 11, failed validation.

Fig. 2. Traversal of Michael’s list with hazard pointers.

its tag (line 12). If tag is 1, indicating that curr is marked, it attempts to detach curr and continue

with next as the new curr (lines 13 and 14). If tag is 0 and the search key is found, it returns (line 17).

Otherwise, it updates prev and curr to curr and next for the next iteration (lines 18 to 20).

The traversing thread must protect curr before accessing it. It announces the protection of curr by
storing curr to hp_curr (line 10, Fig. 2a) and validates it by checking that prev points to curr (line 11,
Fig. 2b). A successful check ensures two conditions: (1) prev is unmarked and thus reachable; and

(2) prev still points to curr, making curr also reachable. Together, these conditions validate curr

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 148. Publication date: June 2025.

148:6 Janggun Lee, Jeonghyeon Kim, and Jeehoon Kang

Tagged Traversal step

𝑝 𝑞ℎ 𝑟

(a) Step to marked 𝑝 .

𝑝 𝑞ℎ 𝑟

(b) Step to marked 𝑞.

𝑟𝑝 𝑞ℎ

(c) Detach 𝑝 and 𝑞 at once.

Fig. 3. Traversal of marked nodes in Harris’s list.

ReclaimedProtected Tagged Traversal step

𝑝 𝑞ℎ 𝑟𝑟𝑝 𝑞ℎ

(a) Detach 𝑝 and 𝑞 at once, then reclaim 𝑞.

𝑝ℎ 𝑟𝑟𝑝ℎ 𝑞

(b) Incorrectly protect and access 𝑞.

Fig. 4. Unsafe traversal of Harris’s list using HP with Valmark .

(Fig. 2c). If validation fails (Fig. 2d), the traversal restarts. Valmark over-approximates unreachability,

potentially failing even if curr is reachable, e.g., when prev is marked but not yet detached.

HP with Valmark requires two HP slots used in a hand-over-hand fashion: (1) hp_curr, protecting
curr; and (2) hp_prev, protecting prev. At the start of the loop, it first tries to protect curr with
hp_curr (line 10); and when a link is followed, it swaps hp_curr and hp_prev (line 19).

2.3 Inapplicability of Hazard Pointers using Valmark to Harris’s List
HP with Valmark is inapplicable to data structures that use optimistic traversal, where threads

traverse marked nodes for performance, as validation requires nodes to be unmarked.

Harris’s list. One of the most representative concurrent data structures with optimistic traversal

is Harris [16]’s list. It shares the same physical structure and marking mechanism as Michael’s list,

but differs in its traversal strategy.

Fig. 3 illustrates a traversal of Harris’s list with marked nodes 𝑝 and 𝑞: (1) a traversing thread
first steps from ℎ to 𝑝 (Fig. 3a); (2) instead of detaching 𝑝 , it steps to 𝑞 (Fig. 3b); and (3) steps to 𝑟
and detaches both 𝑝 and 𝑞 at once (Fig. 3c).

Harris’s list outperforms Michael’s list due to fewer detach operations and less restarts: Harris’s

list can detach multiple marked nodes at once, whereas Michael’s list detaches only one node at a

time. This performance advantage becomes particularly significant under heavy contention (see

Fig. 14a for details).

Incorrect application of HP with Valmark. The aforementioned traversal of Harris’s list is in-

compatible with the hand-over-hand protection of Michael’s list. Fig. 4 illustrates an execution

where a thread uses hand-over-hand protection to traverse Harris’s list but ignores tags to maintain

optimistic traversal, leading to use-after-free. (1) The traversing thread protects 𝑝 and is about to

access 𝑞. (2) Another thread detaches 𝑝 and 𝑞 at once, retires them, sees that 𝑞 is not protected, and

frees 𝑞 (Fig. 4a). (3) The traversing thread announces the protection of 𝑞 and successfully validates

it, as 𝑝 still points to 𝑞 (ignoring 𝑝’s tag), thus steps to and accesses the already freed 𝑞 (Fig. 4b).

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 148. Publication date: June 2025.

Leveraging Immutability to Validate Hazard Pointers for Optimistic Traversals 148:7

2.4 Prior Approahces to Applying Hazard Pointers to Optimistic Traversals
Applying HP impractically. There are two contrived approaches to apply HP to data structures

with optimistic traversal [4], but neither is practical. The first approach protects all nodes met

during traversal and validates that all remain reachable when moving to the next node. This

approach is inefficient because it requires re-checking all intermediate nodes, and it is not robust,

as it demands an unbounded number of HP slots. The second approach restarts unconditionally

upon encountering a marked node. This not only disables optimistic traversal but also breaks

lock-freedom [17]
6
, as traversal can repeatedly restart if the marked node is not detached, which

can occur in Harris’s list. Retrospectively, Michael’s list was adapted from Harris’s list to enable

HP while preserving lock-freedom.

Applying HP to specific data structures. Several prior studies have efficiently applied HP with

optimistic traversal [20, 35, 37], but they are tailored to specific data structures and do not explore

its application to general data structures. In §1, we discussed Michael [35]’s adaptation of Michael

and Scott [38]’s queue. We now explain the others.

Howley and Jones [20] present a lock-free binary search tree with optimistic traversal. They claim

that HP can be applied to their tree by exploiting “the highest unmarked node in the tree, which

can be checked for updates.” While this suggests a way to protect nodes during optimistic traversal,

it does not fully explain how to apply this concept concretely with HP. Notably, it overlooks

the critical role of immutability and how it can be used to ensure that checking the head node

confirms the reachability of marked nodes. Howley [19] (the first author’s Ph.D. thesis) presents an

implementation of the tree using HP, but it does not perform optimistic traversal.

Michael [37] presents a modification of HP that enables unconditional traversal for acyclic data

structures with immutable links [38, 53]. However, they require the data structure’s links to be

updated at most once from intialization, which makes it inapplicable to data structures with mutable

links [16, 39, 47].

Extending HP for optimistic traversal. HP++ [23] is an extension of HP. While data structures

using HP with Valmark must restart when encountering a marked node during validation, those

using HP++ ignore markings and traverse over them to enable optimistic traversal. For safety,

threads detaching a node protect nodes pointed by the detached node. However, this additional

protection during detachment is costly (see §5 for details). Moreover, HP++ cannot be applied to

data structures with complex marking strategies, such as the elimination (a,b) tree [52], because the

tree does not support the invalidationmechanism in HP++ for tracking detached nodes. Invalidation

requires data structures to mark a node by tagging its next pointer field, but the tree marks nodes

using a separate flag.

3 Immutability-Based Validation
We apply our immutability-based validation strategy, Valimmut , to representative lock-free data

structures with optimistic traversal to show its general applicability, in particular to Harris’s list

(§3.1); the Natarajan-Mittal binary tree (§3.2); and the Shavit-Lev-Herlihy skiplist (§3.3). We then

argue that Valimmut is broadly applicable to traversal-based data structures that utilized marking

(§3.4).

6
A data structure is lock-free if, under any scheduling, at least one operation completes successfully.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 148. Publication date: June 2025.

148:8 Janggun Lee, Jeonghyeon Kim, and Jeehoon Kang

3.1 Harris’s List Revisited
We explained the optimistic traversal of Harris’s list, where multiple marked nodes are detached at

once (§2.3); and briefly introduced the application of HP with Valimmut to Harris’s list (§1). We now

detail this application, emphasizing previously unaddressed subtleties.

Algorithm 2 Implementation of Harris’s list using HP with Valimmut .

1: thread-local variables
2: hp_prev, hp_curr, hp_anchor, hp_a_next: HSlot

3: fun Search(list: &Atomic<Node*>, key: int)
→ (&Atomic<Node*>, Node*, bool)

4: restart:
5: prev← list; curr← prev.load()
6: anchor← NULL; a_next← NULL
7: found← false; prev_clear← true
8: while curr ≠ NULL do
9: hp_curr.set(curr)
10: if prev_clear then
11: if prev.load() ≠ curr then
12: goto restart
13: else
14: if anchor.load() ≠ a_next then
15: goto restart
16: (next, tag)← decomp((*curr).next.load())
17: if tag = 0 then
18: if (*curr).key ≥ key then
19: found← (*curr).key = key; break
20: else
21: prev_clear← true
22: prev← &(*curr).next; curr← next

23: anchor← NULL; a_next← NULL
24: hp_swap(&hp_curr, &hp_prev)
25: else
26: prev_clear← false
27: if anchor = NULL then
28: anchor← prev; a_next← curr
29: hp_swap(&hp_anchor, &hp_prev)
30: else if &(*a_next).next = prev then
31: hp_swap(&hp_a_next, &hp_prev)
32: prev← &(*curr).next; curr← next
33: hp_swap(&hp_prev, &hp_curr)
34: end while
35: if anchor ≠ NULL then
36: if anchor.cas(a_next, curr) then
37: retire from a_next to node before curr

38: prev← &(*anchor).next
39: else goto restart
40: if curr ≠ NULL &&

decomp((*curr).next.load()).1 = 1 then
41: goto restart
42: else
43: return (prev, curr, found)

Algorithm. Algorithm 2 presents the implementation of Harris’s list using HP with Valimmut . The

interface and implementation of Harris’s list closely mirrors Michael’s list (Fig. 2), with the only

differences being the implementation of Search and the number of HP slots used. Thus, we focus

on the differences. Code related to HP (shaded in purple) will be explained below.

A Search(list, key) invocation traverses the list to find a node with key and returns whether the

node was found. The traversing thread uses four local variables: curr, the node it aims to check

to in this iteration; prev, the reference to the next field of the node before curr; anchor, the last
unmarked node; and a_next, the node after anchor.
At the start, the traversing thread initializes prev to head and curr to the first node, similar to

Michael’s list. It then enters the loop (from line 8 to line 34) with the invariant that curr is loaded
from prev during the last iteration, and that anchor and a_next are non-null if prev is marked.

Inside the loop, if curr is null, the traversing thread has reached the end of the list and breaks

from the loop, noting it failed to find the target node (line 8). Otherwise, it checks if curr’s next
pointer field is tagged (line 17). If the tag is 0, curr is unmarked, and the thread checks if curr’s
key is greater than or equal to the target key (line 18). If so, curr is the target node and breaks out

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 148. Publication date: June 2025.

Leveraging Immutability to Validate Hazard Pointers for Optimistic Traversals 148:9

Protected Check reachabilityTagged
Reachable

by immutability
Announced

𝑎 𝑎𝑛 𝑝 𝑐(...)ℎ (...)

Fig. 5. Validating 𝑐 by checking 𝑎 in Harris’s list. If successful, 𝑎 is reachable as it is unmarked, and so is 𝑎𝑛
as 𝑎 points to 𝑎𝑛 . As the chain 𝑎𝑛 → · · · → 𝑝 → 𝑐 is immutable, 𝑐 is also reachable and is validated.

of the loop (line 19). Otherwise, it advances prev and curr to the next node, resetting anchor to
NULL (line 21 to line 24). If the tag is not 0, curr is marked, and the thread traverses to the next

node, updating anchor and a_next accordingly (line 26 to line 33).

After the loop, the traversing thread detaches the chain of marked nodes from anchor to curr
(line 36, as in Fig. 3c) and checks that curr is still unmarked and returns the result (line 40).

A key aspect of this algorithm is maintaining the invariant that all marked node’s next field is

immutable. This is achieved by (1) performing all updates with a CAS (line 36, and line 33, line 42,

line 43 of Fig. 2); (2) requiring the "current pointer" argument to have tag value of 0. This ensures

that pointer field is updated only when it has tag 0, i.e., is unmarked.

Protection. We now explain the HP-related code in detail. The traversing thread uses four HP

slots to protect the nodes prev, curr, and two anchor nodes in a hand-over-hand fashion during

traversal. prev is always protected, while anchor and a_next are protected if they are not null. curr
will be protected in the loop. It also tracks whether prev was marked in the previous iteration using

a boolean flag prev_clear, initialized to true.

At the start, if curr is not null, the traversing thread must protect it for later access. It first sets

curr to an HP slot (line 9) and then validates curr. If prev is unmarked, it validates by checking

that prev still points to curr (line 11), in the same way as Michael’s list. Otherwise, it validates by

checking that anchor still points to a_next (line 14).
Fig. 5 shows why checking anchor in line 14 validates curr. The list has head ℎ, and the traversing

thread’s anchor nodes are 𝑎 and 𝑎𝑛 , is currently at 𝑝 , and wants to validate 𝑐 . The nodes between 𝑎𝑛
and 𝑝 are all marked hence immutable. To validate, the thread checks that 𝑎’s next pointer equals

𝑎𝑛 , which also implies that 𝑎’s next pointer field’s tag is 0. If so, 𝑎 is reachable since it is unmarked,

and so is 𝑎𝑛 as 𝑎 points to it. As the chain 𝑎𝑛 → · · · → 𝑝 → 𝑐 is immutable, the thread knows that

𝑎𝑛 (transitively) points to 𝑐 , so 𝑐 is reachable and validated.

After successful validation, the traversing thread updates prev_clear accordingly (lines 21 and 26),
does hand-over-hand protection for anchor and a_next (lines 29 and 31), and upon successful

detachment of the marked chain (line 36) retires the nodes from a_next to curr (line 37).
The protection of a_next is necessary to prevent the ABA problem, which leads to use-after-free.

The ABA problem occurs when a node is detached, reallocated, and then re-inserted at the same

position with the same physical address. Although the allocations are different, they cannot be

distinguished solely by their physical addresses. For instance, if we do not protect 𝑎𝑛 in Fig. 5, the

following execution with use-after-free may occur: (1) The chain of marked nodes from 𝑎𝑛 to 𝑐 is

detached and freed. (2) 𝑎𝑛 is reallocated and re-inserted as the next pointer of 𝑎. (3) Protection of 𝑐

is announced and successfully validated, as 𝑎 still points to 𝑎𝑛 . (4) However, accessing 𝑐 is unsafe
since it has already been freed. To prevent such errors, the traversing thread should protect 𝑎𝑛 .

Harris’s list using HP with Valimmut is robust and lock-free. It is robust because the number of

per-thread HP slots is fixed at four. It is lock-free because a restarted thread always sees evidence

of progress made by another thread. If a thread restarts at line 11, either prev points to a new node

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 148. Publication date: June 2025.

148:10 Janggun Lee, Jeonghyeon Kim, and Jeehoon Kang

FlaggedProtected
Check

reachability
Tagged

Reachable

by immutability
Announced

𝑒𝑑

𝑐

𝑏

𝑎

(a) Traversal to leaf 𝑑 .

𝑒𝑑

𝑐

𝑏

𝑎

(1) (2)

(b) Marking of parent 𝑐 .

𝑎

𝑒𝑑

𝑐

𝑏

(c) Detach marked nodes.

Fig. 6. Traversal during removal of node 𝑑 in Natarajan-Mittal tree.

𝑒𝑑

𝑐

𝑏

𝑎

Fig. 7. Exploiting im-
mutability to validate 𝑑

by checking from 𝑎.

or has been marked, both indicating progress. The same applies to anchor at lines 14 and 39. If a

thread restarts at line 40, curr has been marked, again signaling progress by another thread.

3.2 Natarajan-Mittal Tree
Natarajan and Mittal [39] designed a lock-free external binary search tree. We apply HP with

Valimmut to the Natarajan-Mittal tree, similar to Harris’s list.

It is worth noting the history of applying HP to the Natarajan-Mittal tree. In the original paper,

the authors claim that HP can be applied [39, §3.2], but they do not provide an algorithm or

implementation. The journal version includes an implementation with memory reclamation [40,

§5.1], but it uses DEBRA [4] instead of HP. While an implementation using HP exists in the

artifact for IBR [54], it has been identified as incorrect by Anderson et al. [1, §8], having memory

leaks and use-after-free. To our knowledge, we present the first correct application of HP to the

Natarajan-Mittal tree.

Algorithm. For simplicity, we focus on the parts related to HP, specifically traversal and marking.

A node’s pointer field to child nodes are marked before removal, making them immutable, and

traversal through the tree is optimistic.
7
There are two ways to mark a pointer field: (1) tagging,

indicating that it points to an internal node, and the marked node will be detached. (2) flagging,
indicating that it points to a leaf node, and both the leaf node and the marked node will be detached.

Fig. 6 illustrates the process of removing node 𝑑 from a tree. A thread begins by traversing to

the leaf node 𝑑 (Fig. 6a). Next, it prepares to detach node 𝑑 by marking the parent node 𝑐 in two

steps (Fig. 6b); it (1) flags the pointer 𝑐 → 𝑑 ; then (2) tags the pointer 𝑐 → 𝑒 . After updating both

pointers, the thread detaches marked nodes 𝑏, 𝑐 , and 𝑑 using a single CAS (Fig. 6c).

Protection. Fig. 7 shows a validation example using Valimmut where a traversing thread wants to

protect 𝑑 . The thread protects the most recent unmarked node 𝑎, its next node 𝑏, and the last node

of the marked chain, 𝑐 . To validate 𝑑 , it checks that 𝑎 still points to 𝑏 and is unmarked, and if so,

both 𝑎 and 𝑏 are reachable. Since the chain 𝑏 → 𝑐 → 𝑑 is immutable, 𝑑 is also reachable, completing

validation.

7
Unlike Harris’s list, marking a node does not remove it from the abstract set; i.e., it is not the linearization point.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 148. Publication date: June 2025.

Leveraging Immutability to Validate Hazard Pointers for Optimistic Traversals 148:11

Protected
Check

reachability
Tagged

Reachable

by immutability
Announced Traversal step

−∞ ∞105 15

L0

L1

L2

L3

20

Fig. 8. Applying HP to skiplist’s optimistic traversal.

3.3 Shavit-Lev-Herlihy Skiplist
Shavit et al. [47] designed a lock-free skiplist that implements a set. We apply HP with Valimmut to

the Shavit-Lev-Herlihy skiplist, again similarly to Harris’s list.

It is worth noting the history of applying HP and reclamation algorithms in general to the

Shavit-Lev-Herlihy skiplist. The original implementation with optimistic traversal was in Java,

which does not require manual memory management. In unmanaged languages, it is necessary

to track multiple incoming pointers to a node [6, §A.2]. A common solution is to use reference

counting alongside the reclamation algorithm [23, 27, 28]. But these implementations apply HP to

versions that use non-optimistic traversal for all operations. To our knowledge, we are the first to

apply HP correctly to the Shavit-Lev-Herlihy skiplist with optimistic traversal.

Algorithm. Fig. 8 depicts a skiplist (we explain HP-related parts later). A skiplist of level 𝐻
(indicating the maximum node height, 𝐻 = 4 in Fig. 8), consists of a sorted singly linked list of

nodes at each level from 0 to 𝐻 − 1, with each upper level forming a sublist of the lower level. We

refer to the 𝑁 -th level as L𝑁 . Each node contains a key-value pair, a height ℎ (≤ 𝐻), and a list of

next pointers for levels 0 to ℎ − 1. The skiplist is initialized with two sentinel nodes whose height

is 𝐻 , −∞ at the head and∞ at the tail. Nodes can be marked multiple times, once for each level, by

tagging their next pointer. Tagged next pointer fields are immutable. Nodes are marked from the

top level down to the bottom, and a node is considered removed from the abstract set only if its

L0 pointer is marked. For instance, node 10 is marked at L2 and L1 but remains in the abstract set

because L0 is unmarked, while node 15 is marked at L1 and L0, removing it from the abstract set.

The skiplist uses two traversal strategies: a non-optimistic one for insertion and removal, and an

optimistic one for lookup. In optimistic traversal, the thread starts at the top level and follows the

highest-level pointers that do not overshoot the target key. For instance, to find key 20 in Fig. 8,

a thread starts at −∞ and follows the next pointer at L3, arriving at∞. Since this overshoots the
target, the thread moves down to L2 and proceeds to node 10, “skipping” over the node with key 5.

The thread then ignores the mark on node 10, continues down to L1 to reach node 15, and finally

goes down to L0 to reach node 20, completing the traversal.

Unlike Harris’s list, the skiplist does not detach multiple marked nodes at once because detaching

a node requires updates on multiple pointers. Marked nodes are detached one by one during

non-optimistic traversal, in a similar manner to Michael’s list.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 148. Publication date: June 2025.

148:12 Janggun Lee, Jeonghyeon Kim, and Jeehoon Kang

𝑏𝑎

𝑑

𝑐

(a) Prepare to insert 𝑑 .

𝑎

𝑑

𝑐𝑏

(b) Detach 𝑏.

𝑎

𝑑

𝑐𝑏

(c) Insert 𝑑 but unreachable.

Fig. 9. Example where mutability of a marked node breaks linearizability.

Protection. Fig. 8 also illustrates a validation example using Valimmut where a thread aims to move

from 20 to∞.8 The skiplist’s immutability and validation pattern are similar to Harris’s list, with the

marked chain vertically spanning multiple levels. The traversing thread protects the last unmarked

node −∞ and its next node 10 at L2, and the end of the marked chain 20 at L0. To validate∞, the
thread checks if −∞ still points to 10 and remains unmarked. If so, both −∞ and 10 are reachable.

Since the chain 10 → 15 → 20 → ∞ is immutable across levels, ∞ is still reachable and thus

successfully validated.

3.4 Applicability of HP with Valimmut

The previous three examples illustrated the use of HP with Valimmut , showing that the immutability

of the data structures was sufficient for validation. We now argue that Valimmut is broadly applicable

to traversal-based data structures, as immutability is essential for their correctness. Specifically,

immutability is essential for linearizability [18], the standard correctness criterion for concurrent

data structures, which requires that every execution trace match a sequential execution.

To see why, consider the scenario depicted in Fig. 9, which illustrates how allowing marked nodes

(pictured as dashed nodes) to remain mutable breaks linearizability in a general traversal-based

data structure. Initially, there are three linked nodes, 𝑎, 𝑏 and 𝑐 , and a thread is attempting to insert

a node 𝑑 in between 𝑏 and 𝑐 (Fig. 9a). Then another thread intervenes, and marks and detaches 𝑏

(Fig. 9b). As marked nodes can be mutated, the first thread successfully inserts 𝑑 (Fig. 9c). However,

node 𝑑 becomes unreachable, breaking linearizability: a later removal of 𝑑 will fail, a scenario

impossible in a sequential execution.

4 Formal Verification
We formally verify the safety (i.e., no memory errors) of Harris’s list protected using HP with

Valimmut (Algorithm 2), building upon Jung et al. [22]’s verification of HP. We first review the

necessary background (§4.1), then present the key ideas in the verification of validation in Harris’s

list (§4.2). The verification of other parts largely follows that of Harris’s list with RCU in Jung et al.

[22] and is omitted. Notably, we were able to utilize Jung et al. [22]’s specifications for HP without

any modifications, even though Valimmut is a new validation strategy. For the full proof, see our

Rocq development [30].

4.1 Background
Separation logic basics. We build our proofs in the Iris separation logic framework [24, 25],

and write our target programs in an untyped call-by-value 𝜆-calculus with mutable state and

concurrency, similar to Iris’s HeapLang. In this following, 𝑖𝑃𝑟𝑜𝑝 is the type of Iris proposition,

𝑃1 ∗ 𝑃2 denotes the separating conjunction of two 𝑖𝑃𝑟𝑜𝑝s 𝑃1 and 𝑃2, and 𝑃1 ⊢ 𝑃2 denotes logical
entailment. Logical entailments do not allow changes to ghost states, which are crucial in modern

8
Although∞ is a sentinel node that is always reachable, its key value must still be read for confirmation, which requires

protection.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 148. Publication date: June 2025.

Leveraging Immutability to Validate Hazard Pointers for Optimistic Traversals 148:13

Predicates
NodeRes ≜ Loc→ Val→ NodeId→ iProp Managed(ℓ : Loc, 𝑖 : NodeId, 𝑃 : NodeRes) : iProp

Protected(𝑠𝑖𝑑 : HSlot, ℓ : Loc, 𝑖 : NodeId, 𝑃 : NodeRes) : iProp HPSlot(𝑠𝑖𝑑 : HSlot, ℓ : Loc) : iProp
Rules
(Managed-New)

ℓ ↦→ 𝑣 ∗ (∀𝑖 . 𝑖 fresh 𝑃 (ℓ, 𝑣, 𝑖)) ∃𝑖 . 𝑖 fresh ∗Managed(ℓ, 𝑖, 𝑃)
(HP-Retire)

{Managed(ℓ, _, _)} retire(ℓ) {True}

(HPSlot-Set)

{HPSlot(𝑠𝑖𝑑, _)} 𝑠𝑖𝑑.set(ℓ) {HPSlot(𝑠𝑖𝑑, ℓ)}
(Protected-Managed-Agree)

Protected(_, ℓ, 𝑖, _) ∗Managed(ℓ, 𝑖′, _) ⊢ 𝑖 = 𝑖′

(HPSlot-Validate)

Managed(ℓ, 𝑖, 𝑃) ∗ HPSlot(𝑠𝑖𝑑, ℓ) Managed(ℓ, 𝑖, 𝑃) ∗ Protected(𝑠𝑖𝑑, ℓ, 𝑖, 𝑃)

(Protected-Access)

{∃𝑣 . ℓ ↦→ 𝑣 ∗ 𝑃 (ℓ, 𝑣, 𝑖) ∗ 𝑃1} 𝑒 {ℓ ↦→ 𝑣 ′ ∗ 𝑃 (ℓ, 𝑣 ′, 𝑖) ∗ 𝑃2} 𝑒 physically atomic

{Protected(𝑠𝑖𝑑, ℓ, 𝑖, 𝑃) ∗ 𝑃1} 𝑒 {Protected(𝑠𝑖𝑑, ℓ, 𝑖, 𝑃) ∗ 𝑃2}

Fig. 10. A specification of HP.

separation logic for describing various protocols. To support this, Iris supports view shifts, 𝑃1 𝑃2,

which denotes that starting from 𝑃1, we can modify ghost states and transition to 𝑃2. We specify an

expression 𝑒 as a Hoare triple {𝑃 } 𝑒 {𝑄} , where 𝑃 is the precondition and 𝑄 is the postcondition.

Modular specification of HP. Fig. 10 shows the modular specification of HP by Jung et al. [22].

At the center of the specifications are the Managed, HPSlot, and Protected predicates.

Managed(ℓ, 𝑖, 𝑃) denotes ownership of a pointer ℓ with allocation id 𝑖 and a node resource 𝑃 . Each
allocation has a unique allocation id, so if a pointer is freed and reallocated, the ids will differ. A

node resource 𝑃 (ℓ, 𝑣, 𝑖) denotes the state of a node at address ℓ with value 𝑣 and allocation id 𝑖 , such

as immutability. Managed-New creates a Managed from a points-to predicate 𝑙 ↦→ 𝑣 and a view

shift to 𝑃 . A points-to predicate is a primitive resource used for reading and writing. HP-Retire

destroys aManaged. Thus, ownership of Managed for a node implies that it has not been retired.

HPSlot(𝑠, ℓ) denotes that the pointer ℓ is announced at the HP slot 𝑠; and Protected(𝑠, ℓ, 𝑖, 𝑃)
denotes that the pointer ℓ with allocation ID 𝑖 and node resource 𝑃 is protected by an HP slot 𝑠 .

To obtain a Protected, one announces a pointer to a HPSlot using HPSlot-Set; and uses HPSlot-

Validate with aManaged to validate the protection. These two steps mirror those of an HP client

to protect a pointer. Protected-Access states that Protected allows access to the underlying points-

to-predicate and node resource to perform 𝑒 , provided that 𝑒 is atomic: it executes in a single step

without any interleaving from the scheduler. Protected-Managed-Agree says that the allocation

IDs of Protected and Managed predicates for the same pointer should coincide, ensuring that a

protected pointer is not deallocated and thus free from the ABA problem.

4.2 Proof of Validation in Harris’s List
We sketch the proof of the validation using the anchor nodes in the Search function of Harris’s list

(line 14 of Algorithm 2) in three parts: the shape invariant that describes the invariants of memory

nodes in shared memory; the loop invariant that describes the invariants of thread-local variables
during the traversal; and the concrete proof steps. The shape invariant is similar to that in Jung

et al. [22]’s proof of Michael’s list using HP with Valmark , but the loop invariant and proof steps are

new in this paper.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 148. Publication date: June 2025.

148:14 Janggun Lee, Jeonghyeon Kim, and Jeehoon Kang

HLNode(ℓ, 𝑣, 𝑖) ≜ . . . ∗ (∀𝐴. IsHL(𝐴, _) ⊢ 𝐴(𝑖) = (𝑙, 𝑣)) ∗
∨{

LSB(𝑣 .next) = 0 ∗ ℓ is mutable

LSB(𝑣 .next) = 1 ∗ ℓ is immutable

IsHL(𝐴, 𝐿) ≜ AllNodes(𝐴, 𝐿) ∗ ReachableNodes(𝐴, 𝐿) ∗ . . .

AllNodes(𝐴, 𝐿) ≜ ∗
𝑖 ↦→(ℓ,𝑣) ∈𝐴

∨{
LSB(𝑣 .next) = 0 ∗ (𝑖, ℓ, 𝑣) ∈ 𝐿 ∗ · · ·
LSB(𝑣 .next) = 1 ∗ ℓ is immutable · · ·

ReachableNodes(𝐴, 𝐿) ≜ ∗
𝑘 ↦→(𝑖,ℓ,𝑣) ∈𝐿[..:−1]

Managed(ℓ, 𝑖,HLNode) ∗ 𝐿(𝑘 + 1) = (_, 𝑣 .next, _) ∗𝐴(𝑖) = (𝑙, 𝑣)

Fig. 11. Shape invariant for Harris’s list using HP with Valimmut .

LoopInvHL ≜ ProtInv ∗ RetireChain ∗ · · ·
ProtInv ≜ Protected(hp_anchor, anchor, 𝑖anchor,HLNode) ∗ Protected(hp_prev, prev, 𝑖prev,HLNode) ∗

Protected(hp_a_next, a_next, 𝑖a_next,HLNode) ∗ HPSlot(hp_curr, _)
RetireChain(anchor, 𝑖anchor, curr, 𝑖curr, 𝐿′) ≜ 𝐿(0) = (𝑖anchor, anchor, _) ∗ 𝐿(|𝐿 | − 1) = (𝑖curr, curr, _) ∗∗

𝑘 ↦→(𝑖,ℓ,𝑣) ∈𝐿[..:−1]
𝑣 .next is immutable ∗ 𝐿(𝑘 + 1) = (_, 𝑣 .next, _)

(RetireChain-curr)

(anchor, 𝑖anchor, _) ∈ 𝐿
RetireChain(anchor, 𝑖anchor, curr, 𝑖curr, 𝐿′) ∗ IsHL(𝐴, 𝐿) ⊢ (curr, 𝑖curr, _) ∈ 𝐿

Fig. 12. Loop invariant of Search.

Shape invariant. Fig. 11 shows the shape invariant of Harris’s list using HP with Valimmut . For

simplicity, we only show the parts relevant to the validation. The node resource HLNode(ℓ, 𝑣, 𝑖)
denotes the two possible states of a node: marked or unmarked, using the LSB of v.next. If the LSB
is 0, ℓ is unmarked and still mutable. Otherwise, the LSB is 1, ℓ is marked and immutable. The first

part ensures that the node is contained in the map 𝐴, explained below.

The main invariant is IsHL(𝐴, 𝐿), where𝐴 is an insert-only finite map (not related to the abstract
set Harris’s list implements) from allocation id to nodes that have been added to the list, and 𝐿 is

the list of currently reachable nodes. The first component AllNodes states that for each node (ℓ, _)
in the range of 𝐴, if ℓ is unmarked, ℓ is in 𝐿 (i.e., reachable), and if not, ℓ is immutable. The second

component ReachableNodes stores for each node 𝑝 in 𝐿 (except for the last node, which is null),

the Managed for 𝑝 , and the facts that 𝑝 is in 𝐴 and 𝑝’s next node is in 𝐿. During validation, one

will look up information for the target node inside the two parts in the invariants.

Loop invariant of Search. Fig. 12 shows the key parts of the loop invariant LoopInvHL of Search
(variables are omitted for brevity).

9
The first component ProtInv stores the fact that the anchor,

a_next, and prev pointers are protected by their respective HP slots. curr is not protected, as the
first thing we will do in the loop is protect it. The second component RetireChain stores the marked

nodes seen during the traversal. Specifically, RetireChain(anchor, _, curr, _, 𝐿′) states that every
node in 𝐿′, except for the last node curr, is immutable, and its next node is also in 𝐿′.

9
The full invariant does case analysis on whether anchor is null, and whether a_next equals prev. We focus on the most

complicated case and omit the others.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 148. Publication date: June 2025.

Leveraging Immutability to Validate Hazard Pointers for Optimistic Traversals 148:15

For validation, the key usage of the loop invariant is using RetireChain to show that its end

pointer is reachable. Formally, RetireChain-curr states that if one has a RetireChain from anchor
to curr, and the current list state is IsHL(𝐴, 𝐿), then anchor being in L implies curr being in L.

Intuitively, RetireChain-curr is sound as RetireChain is an immutable chain, so the reachability of

the first element implies reachability of the entire chain, including the last element.

Proof steps. We sketch the proof steps one will perform when validating using anchor nodes. The

current separation logic context will roughly be as follows:

Protected(hp_a_next, a_next, 𝑖a_next,HLNode) ∗ HPSlot(hp_curr, curr) ∗
RetireChain(a_next, 𝑖a_next, curr, 𝑖curr, 𝐿′) ∗ IsHL(𝐴, 𝐿) ∗ · · ·

From here, we prove the validation of HPSlot(hp_curr, curr). Specifically, we proceed as follows.

• By HLNode, we have 𝐴(𝑖anchor) = (anchor, _).
• By AllNodes, for anchor, since it is unmarked, we have (_, anchor, 𝑣) ∈ 𝐿 where 𝑣 .next = a_next.
• By ReachableNodes for anchor, we have (𝑖′, a_next, _) ∈ 𝐿 for some allocation id 𝑖′.
• By ReachableNodes for a_next, we have a Managed(𝑖′, a_next, _).
• By Protected-Managed-Agree with Managed(𝑖′, a_next, _) and Protected(_, a_next, 𝑖a_next, _),
we have that 𝑖′ = 𝑖a_next, and so (𝑖a_next, a_next, _) ∈ 𝐿.
• By RetireChain-curr, we have that (𝑖curr, curr, _) ∈ 𝐿.
• By ReachableNodes for curr, we have a Managed for it, and by HPSlot-Validate using

HPSlot(hp_curr, currr), we obtain a Protected predicate for curr, finishing the proof.

5 Performance Evaluation
We compare HP with Valimmut against representative reclamation algorithms supporting optimistic

traversal. The comparison is conducted across various combinations of reclamation algorithms and

data structures, summarized in Fig. 13.

Building upon prior research [7, 9, 15], we optimize HP, HP++, PEBR, CIRC0-HP, and CDRC-HP

implementations by employing asymmetric fences [8, §4] to minimize memory fence overhead.

Specifically, we replace the protection-side fence with a compiler fence, which prevents compiler

from reordering instructions without runtime cost; and the reclamation-side fence with a process-
wide fence [5, 31], supported by Linux and Windows, ensuring a full memory barrier across all

threads. This hot-path optimization for protection substantially reduces the overall memory fence

costs while preserving correctness.

All algorithms trigger reclamation once per 1,024 retirements for a fair comparison. We evaluate

the performance of two non-optimistic data structures, HMList and EFRBTree, against their opti-

mistic counterparts, HHSList and NMTree, respectively, to demonstrate the performance benefits

of optimistic traversal.

We implement the benchmark driver as a Rust library
11
and compile it with Rust nightly-2025-

03-03 with default and link-time optimizations. We used jemalloc [13] to reduce contention on the

memory allocator. We conducted experiments on two dedicated machines: AMD64T: single-socket
AMD EPYC 7543 (2.8GHz, 32 cores, 64 threads) with eight 32GiB DDR4 DRAMs (256GiB in total),

and INTEL96T: dual-socket Intel Xeon Gold 6248R (3.0GHz, 48 cores, 96 threads) with twelve

32GiB DDR4 DRAMs (384GiB in total). The machines run Ubuntu 24.04 and Linux 6.8 with the

default configuration. Both machines exhibit similar results, so we discuss only those for AMD64T.

For the full experimental results, please see the supplementary material [30, §A and §B].

10
For HP with Valimmut , HP++, HP-BRCU, VBR, and PEBR, get() is only lock-free due to rollback/recovery.

11
Included in the artifact [30].

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 148. Publication date: June 2025.

148:16 Janggun Lee, Jeonghyeon Kim, and Jeehoon Kang

(a) List of evaluated reclamation algorithms.
reclamation description robust?

NR no reclamation, as a rough upper bound on performance ✗

RCU epoch-based RCU [14, 16], as an efficient reclamation algorithm ✗

PEBR a hybrid of pointer- and epoch-based RCU [26] ✓

VBR version-based reclamation [48] ✓

HP with Valimmut the original HP [35, 36] with our immutability-based validation ✓

HP++ an extension of HP with frontier protections and invalidation [23] ✓

HP-BRCU an extension of HP with BRCU-expedited traversal [28] ✓

CIRC0-HP an HP flavor of CIRC without immediate recursive destruction [21] ✗

CDRC-HP an HP flavor of CDRC [1, 2] ✗

(b) List of evaluated data structures. ✓in "optimistic?" means that the underlying traversals are optimistic.
data structure description optimistic? lock-free?

HashMap a chaining hash table [34] ✓ ✓

SkipList a skip list [47] with wait-free get()10 ✓ ✓

NMTree an external binary tree [39] ✓ ✓

ElimAbTree an (a,b) tree with elimination [52] ✓ ✗

HHSList Harris’s list [16] with wait-free get() [47]10 ✓ ✓

HMList Michael list [34] ✗ ✓

EFRBTree Ellen et al. [12]’s external binary tree ✗ ✓

Fig. 13. Summary of evaluated reclamation algorithms and data structures.

Methodology. We measure the throughput (operations per second) and the peak memory usage

for (1) varying numbers of threads: up to twice the number of hardware threads, 128 for AMD64T

and 192 for INTEL96T; (2) three types of workloads: read-intensive (90% reads and 10% writes),

read-write (50% reads and 50% writes), and write-only (50% inserts and 50% deletes); and (3) a
fixed time: 10 seconds. Each thread repeatedly calls get(), insert(), and remove() randomly. The key

ranges are 1K or 10K for lists, and 100K or 100M for others. Data structures are pre-filled to 50%.

Results. We discuss the results in a per-reclamation-algorithm basis, as most data structures

exhibit similar trends. An exception is ElimAbTree (Fig. 15d), for which all applicable reclamation

algorithms perform similarly because performance is dominated by lock contention, rendering

protection overhead insignificant. This significantly degrades performance in oversubscribed

scenarios, represented by red-shaded areas, far more than in other data structures.

HP with Valimmut greatly benefits from optimistic traversal enabled. Fig. 14 compares the maxi-

mum throughput that can be achieved in lists and trees, from those using HP with Valmark (HMList

and EFRBTree) to those using HP with Valimmut (HHSList and NMTree). For data structures with

optimistic traversal outperform those without optimistic traversal by a large margin, by up to 24%

for lists and 61% for trees.

Overall, HP with Valimmut outperforms HP++, PEBR, CIRC0-HP and CDRC-HP and is competitive

with HP-BRCU and VBR. Fig. 15 presents the throughput and memory usage of reclamation

algorithms on read-write workloads for various data structures. Throughput steadily increases

with the number of threads until oversubscription causes performance degradation. Memory usage

remains linear with the number of threads for robust algorithms, while it increases dramatically

for non-robust ones, especially during oversubscription.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 148. Publication date: June 2025.

Leveraging Immutability to Validate Hazard Pointers for Optimistic Traversals 148:17

HP with Valimmut HP with Valmark

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

5

10

15

20

25

30

35

40
Th

ro
ug

hp
ut

 (M
 o

p/
s)

HHSList v.s. HMList

HHSList
HMList

(a) Lists with key range 100.

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

20

40

60

80

Th
ro

ug
hp

ut
 (M

 o
p/

s)

NMTree v.s. EFRBTree

NMTree
EFRBTree

(b) Trees with key range 100K.

Fig. 14. Throughput for a varying number of threads of read-write workloads for list and tree.

NR RCU PEBR VBR

HP with Valimmut HP++ HP-BRCU CIRC0-HP CDRC-HP

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

25

50

75

100

125

150

175

200

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

10

20

30

40

50

60

70

80

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HashMap

(a) HashMap.

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

20

40

60

80

100

Th
ro

ug
hp

ut
 (M

 o
p/

s)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

20

40

60

80

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

NMTree

(b) NMTree.

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

20

40

60

80

Th
ro

ug
hp

ut
 (M

 o
p/

s)

SkipList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

50

100

150

200

250

300

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

SkipList

(c) SkipList.

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

25

50

75

100

125

150

175

Th
ro

ug
hp

ut
 (M

 o
p/

s)

ElimAbTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

10

20

30

40

50

60

70

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

ElimAbTree

(d) ElimAbTree.

Fig. 15. Throughput and peak memory usage for a varying number of threads on read-write workloads with
key range 100K.

We now explain noteworthy points about other reclamation algorithms. The baseline NR and

RCU generally outperform other reclamation algorithms, as NR simply does not reclaim at all

and RCU uses coarse-grained protection to amortize overhead. In HashMap, HP with Valimmut
outperforms RCU in (near-)oversubscribed scenarios because (1) the traversal of HashMap is short,

so the per-node protection overhead of HP is insignificant, and (2) RCU has more unreclaimed

nodes to attempt reclamation on, significantly increasing its overhead.

HP-BRCU generally performs well, as its per-node protection overhead is amortized by BRCU-

expedited traversal. Unlike RCU, it bounds unreclaimed nodes by restarting stalled threads, making

it fast in HashMap. However, HP-BRCU is difficult to apply to data structures due to its complex

requirements (see §6).

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 148. Publication date: June 2025.

148:18 Janggun Lee, Jeonghyeon Kim, and Jeehoon Kang

VBR generally performs well, as it uses a memory allocator that minimizes allocation overhead by

not returning memory to the OS. However, it underperforms in SkipList due to the high frequency

of updates, which is expensive in VBR as it uses multi-word CAS. Memory usage grows strictly

linear across both under- and oversubscription scenarios as VBR preallocates memory based on the

number of threads and the size of a node in the data structure, and never actually frees them.

HP++, PEBR, CIRC0-HP and CDRC-HP exhibit low throughout due to the cost of additional

mechanisms to support optimistic traversal. Those mechanisms include: (1) frontier protections and
invalidation for HP++, (2) epoch management and ejection algorithm for PEBR, and (3) reference
counting for CIRC0-HP and CDRC-HP. HP++ is not applicable to ElimAbTree because it requires

marking to use a node’s next pointer field’s LSB, but ElimAbTree’s marking happens in a separate

field (§2.4). PEBR is robust but has a memory footprint similar to non-robust RCU. PEBR’s robustness

relies on timely restarting stalled threads, but in practice, restarts are uncommon as frequent restarts

reduce throughput. CIRC0-HP and CDRC-HP are not robust because they rely on deferred reference

counting, which slows down the reclamation of long unreachable chains
12
, which is especially

prevalent in SkipList.

6 Related and Future Work
In §2.4, we discussed prior approaches to applying HP to optimistic traversal. We now discuss other

related work.

The ERA theorem for reclamation algorithms. Sheffi and Petrank [49, 50] proved the ERA
theorem: reclamation algorithms cannot simultaneously achieve ease of integration, robustness,

and applicability. A reclamation algorithm is considered easy to integrate if it provides an API that

only needs to replace existing memory accesses or be placed at the start and end of operations, is

considered robust if it bounds the number of retired but unreclaimed nodes, and applicable if it

can be used with “plain implementations”, which are data structures without reclamation but with

proper calls to the retire function, as if a reclamation algorithm were in use. The key idea of the

proof is that Harris’s list with reclamation algorithms is either not robust or not easy to integrate.

The authors argue that HP satisfies ease of integration and robustness, making it inapplicable to

Harris’s list. However, we applied HP to Harris’s list (§3.1). The discrepancy arises from how HP is

used. The version of HP that is easy to integrate performs protection using a dedicated protect
function, which executes a load-validation loop on a single pointer. protect is restricted to Valmark ,

rendering it incompatible with Harris’s list (§2.3). On the other hand, HP with Valimmut requires

additional memory accesses (e.g., line 11 of Algorithm 2), thus does not satisfy ease of integration.

Robust and applicable reclamation algorithms. PEBR [26], DEBRA+ [4], NBR+ [51], and

HP-BRCU [28] are hybrids of HP’s per-pointer protection and RCU’s coarse-grained protection.

For robustness, they neutralize threads that block reclamation, i.e., forcefully restart them. Once

neutralized, threads must halt their operations and execute custom recovery code. DEBRA+, NBR+,

and HP-BRCU use POSIX signals [32] for neutralization, while PEBR marks the thread, allowing it

to neutralize itself when attempting to protect a node. These algorithms can optimistically traverse

data structures because they neutralize threads when further traversal becomes unsafe.

However, PEBR, DEBRA+, and NBR+ employ a coarse-grained neutralization strategy, signifi-

cantly degrading performance during long-running operations [28].

12
This limitation was previously identified by [21], who proposed immediate recursive destruction to address the slow

reclamation issue of deferred reference counting. However, they applied their technique only to CIRC-EBR, an EBR-based

variant of their reference counting approach, and it remains unclear how to effectively extend it to their HP-based variant.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 148. Publication date: June 2025.

Leveraging Immutability to Validate Hazard Pointers for Optimistic Traversals 148:19

In contrast, HP-BRCU uses an efficient fine-grained signaling approach that neutralizes only the

threads causing stalls. However, HP-BRCU requires data structures to be “abort-rollback-safe” and

requires significant expertise to ensure correctness. A traversal is abort-rollback-safe if repeated

attempts do not alter its semantics and if aborting mid-execution does not introduce safety or

liveness issues. For example, traversals must not (de)allocate memory, acquire locks, perform

updates (except for helping), or retire nodes. To apply HP-BRCU to data structures that perform

updates during traversal [11, 34, 47], one uses abort masks, which partition a traversal into abort-

rollback-safe sections to guarantee protection. Abort masking and its recovery process must be

implemented carefully to prevent introducing bugs.

VBR [48] is an optimistic algorithm that permits access to retired nodes, with a subsequent

verification step to ensure the validity of the access. To enable optimistic writes, VBR assigns a

version number to each mutable node, atomically updating both the version number and the node’s

other fields using a wide CAS. If an outdated version number is detected, the operation fails and

requires custom recovery. This approach allows VBR to support optimistic traversal. However, VBR

requires a type-safe memory allocator that does not return memory to the OS; and the data that

can be stored is restricted to types supporting optimistic access, such as volatile or atomic types.

Reference counting algorithms. Reference counting algorithms such as CDRC [2] and CIRC [21]

aim to provide a safe API for concurrent memorymanagement at the cost of performance. Compared

to manual reclamation algorithms where clients need to manually protect and retire nodes, reference

counting algorithms allow unrestricted access to nodes and automatically reclaims memory when

it is no longer in use, making them much less error-prone. However, reference counting algorithms

are typically slower than manual reclamation algorithms due to their updates on reference counters,

which are internally used to track when to free nodes (§5).

Theoretical comparison of optimism level. Reclamation algorithms that support optimistic

traversal differ in the amount of restarts required during traversal.

The most optimistic algorithms include RCU [33], reference counting, and tracing-based garbage

collection, which can traverse detached nodes and do not restart during traversal. These algorithms

use coarse-grained protection, protecting all nodes at once.

The intermediate algorithms include neutralization-based methods [4, 26, 28, 51], VBR [48], and

HP++ [23], which can also traverse detached nodes but may require restarts. HP++ may fail to

protect detached nodes if the target node is invalidated. Neutralization-based methods require a

restart if the thread is neutralized. VBR’s protection fails if the node’s version number is outdated.

The least optimistic algorithm is HP with Valimmut , which can traverse marked but reachable

nodes but cannot traverse detached nodes. However, this does not imply that HP is slower. We

observed that HPwith Valimmut outperformsHP++, PEBR, and reference counting, and is competitive

with RCU and VBR because the protection overhead is more critical than the level of optimism (§5).

Future work: applying immutability-based validation to other reclamation algorithms.
We plan to apply immutability-based validation to prior work that has reduced HP’s per-node

protection overhead but did not increase applicability. Hazard Eras [46], IBR [54], and Hyaline [42]

use an internal epoch for validation to amortize costs across multiple protections.Wait-free Eras [41]

and Crystalline [43] extend these algorithms with better progress guarantees using multi-word

CAS. None of these algorithms have been thought to be efficiently applicable to optimistic traversal

because their core protectionmechanism is similar to HP.We believe this limitation can be addressed

by leveraging immutability.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 148. Publication date: June 2025.

148:20 Janggun Lee, Jeonghyeon Kim, and Jeehoon Kang

Acknowledgments
We thank the PLDI 2025 reviewers for their valuable feedback, which greatly improved the pre-

sentation of the paper. This work is supported by Institute for Information & Communications

Technology Planning & Evaluation(IITP) grant funded by the Korea government(MSIT) partly under

the project (No. RS-2024-00459026, Energy-Aware Operating System for Disaggregated System,

80%), partly under the Graduate School of Artificial Intelligence Semiconductor (No. IITP-2025-RS-

2023-00256472, 10%), and partly under the Information Technology Research Center(ITRC) support

program (No. IITP-2025-RS-2020-II201795, 10%)

Data Availability Statement
The implementation, proofs, and appendix for this paper can be found open-sourced at [30].

References
[1] Daniel Anderson, Guy E. Blelloch, and Yuanhao Wei. 2021. Concurrent Deferred Reference Counting with Constant-

Time Overhead. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design
and Implementation (Virtual, Canada) (PLDI 2021). Association for Computing Machinery, New York, NY, USA, 526–541.

doi:10.1145/3453483.3454060

[2] Daniel Anderson, Guy E. Blelloch, and Yuanhao Wei. 2022. Turning Manual Concurrent Memory Reclamation into

Automatic Reference Counting. In Proceedings of the 43rd ACM SIGPLAN International Conference on Programming
Language Design and Implementation (San Diego, CA, USA) (PLDI 2022). Association for Computing Machinery, New

York, NY, USA, 61–75. doi:10.1145/3519939.3523730

[3] Trevor Brown, Faith Ellen, and Eric Ruppert. 2014. A General Technique for Non-Blocking Trees. SIGPLAN Not. 49, 8
(feb 2014), 329–342. doi:10.1145/2692916.2555267

[4] Trevor Alexander Brown. 2015. Reclaiming Memory for Lock-Free Data Structures: There Has to Be a Better Way. In

Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing (Donostia-San Sebastián, Spain) (PODC
’15). Association for Computing Machinery, New York, NY, USA, 261–270. doi:10.1145/2767386.2767436

[5] Windows Dev Center. 2025. FlushProcessWriteBuffers function. https://docs.microsoft.com/en-us/windows/desktop/

api/processthreadsapi/nf-processthreadsapi-flushprocesswritebuffers

[6] Nachshon Cohen and Erez Petrank. 2015. Automatic Memory Reclamation for Lock-Free Data Structures. In Pro-
ceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages,
and Applications (Pittsburgh, PA, USA) (OOPSLA 2015). Association for Computing Machinery, New York, NY, USA,

260–279. doi:10.1145/2814270.2814298

[7] M. Desnoyers, P. E. McKenney, A. S. Stern, M. R. Dagenais, and J. Walpole. 2012. User-Level Implementations of Read-

Copy Update. IEEE Transactions on Parallel and Distributed Systems 23, 2 (2012), 375–382. doi:10.1109/TPDS.2011.159
[8] Dave Dice, Maurice Herlihy, and Alex Kogan. 2016. Fast Non-Intrusive Memory Reclamation for Highly-Concurrent

Data Structures. In Proceedings of the 2016 ACM SIGPLAN International Symposium on Memory Management (Santa
Barbara, CA, USA) (ISMM 2016). Association for Computing Machinery, New York, NY, USA, 36–45. doi:10.1145/

2926697.2926699

[9] Dave Dice, Hui Huang, and Mingyao Yang. 2001. Asymmetric Dekker Synchronization. http://web.archive.org/web/

20080220051535/http://blogs.sun.com/dave/resource/Asymmetric-Dekker-Synchronization.txt

[10] Dana Drachsler, Martin Vechev, and Eran Yahav. 2014. Practical Concurrent Binary Search Trees via Logical Ordering.

SIGPLAN Not. 49, 8 (feb 2014), 343–356. doi:10.1145/2692916.2555269
[11] Faith Ellen, Panagiota Fatourou, Joanna Helga, and Eric Ruppert. 2014. The Amortized Complexity of Non-Blocking

Binary Search Trees. In Proceedings of the 2014 ACM Symposium on Principles of Distributed Computing (Paris, France)

(PODC ’14). Association for Computing Machinery, New York, NY, USA, 332–340. doi:10.1145/2611462.2611486

[12] Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel. 2010. Non-Blocking Binary Search Trees. In

Proceedings of the 29th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (Zurich, Switzerland)

(PODC ’10). Association for Computing Machinery, New York, NY, USA, 131–140. doi:10.1145/1835698.1835736

[13] Jason Evans. 2006. A scalable concurrent malloc (3) implementation for FreeBSD.

[14] Keir Fraser. 2004. Practical lock-freedom. Ph. D. Dissertation. University of Cambridge, Computer Laboratory.

[15] David Goldblatt. 2022. P1202R5: Asymmetric Fences. https://wg21.link/p1202r5.

[16] Timothy L. Harris. 2001. A Pragmatic Implementation of Non-Blocking Linked-Lists. In Proceedings of the 15th
International Conference on Distributed Computing (DISC ’01). Springer-Verlag, Berlin, Heidelberg, 300–314.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 148. Publication date: June 2025.

https://doi.org/10.1145/3453483.3454060
https://doi.org/10.1145/3519939.3523730
https://doi.org/10.1145/2692916.2555267
https://doi.org/10.1145/2767386.2767436
https://docs.microsoft.com/en-us/windows/desktop/api/processthreadsapi/nf-processthreadsapi-flushprocesswritebuffers
https://docs.microsoft.com/en-us/windows/desktop/api/processthreadsapi/nf-processthreadsapi-flushprocesswritebuffers
https://doi.org/10.1145/2814270.2814298
https://doi.org/10.1109/TPDS.2011.159
https://doi.org/10.1145/2926697.2926699
https://doi.org/10.1145/2926697.2926699
http://web.archive.org/web/20080220051535/http://blogs.sun.com/dave/resource/Asymmetric-Dekker-Synchronization.txt
http://web.archive.org/web/20080220051535/http://blogs.sun.com/dave/resource/Asymmetric-Dekker-Synchronization.txt
https://doi.org/10.1145/2692916.2555269
https://doi.org/10.1145/2611462.2611486
https://doi.org/10.1145/1835698.1835736
https://wg21.link/p1202r5

Leveraging Immutability to Validate Hazard Pointers for Optimistic Traversals 148:21

[17] Maurice Herlihy and Nir Shavit. 2011. On the Nature of Progress. In Principles of Distributed Systems, Antonio
Fernàndez Anta, Giuseppe Lipari, and Matthieu Roy (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 313–328.

[18] Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: A Correctness Condition for Concurrent Objects.

ACM Trans. Program. Lang. Syst. 12, 3 (July 1990), 463–492. doi:10.1145/78969.78972

[19] Shane V. Howley. 2012. Lock-free internal binary search trees with memory management. Ph. D. Dissertation. Trinity
College Dublin, Ireland. https://hdl.handle.net/2262/77623

[20] Shane V. Howley and Jeremy Jones. 2012. A Non-Blocking Internal Binary Search Tree. In Proceedings of the Twenty-
Fourth Annual ACM Symposium on Parallelism in Algorithms and Architectures (Pittsburgh, Pennsylvania, USA) (SPAA
’12). Association for Computing Machinery, New York, NY, USA, 161–171. doi:10.1145/2312005.2312036

[21] Jaehwang Jung, Jeonghyeon Kim, Matthew J. Parkinson, and Jeehoon Kang. 2024. Concurrent Immediate Reference

Counting. Proc. ACM Program. Lang. 8, PLDI, Article 153 (June 2024), 24 pages. doi:10.1145/3656383
[22] Jaehwang Jung, Janggun Lee, Jaemin Choi, Jaewoo Kim, Sunho Park, and Jeehoon Kang. 2023. Modular Verification of

Safe Memory Reclamation in Concurrent Separation Logic. Proc. ACM Program. Lang. 7, OOPSLA2, Article 251 (oct
2023), 29 pages. doi:10.1145/3622827

[23] Jaehwang Jung, Janggun Lee, Jeonghyeon Kim, and Jeehoon Kang. 2023. Applying Hazard Pointers to More Concurrent

Data Structures. In Proceedings of the 35th ACM Symposium on Parallelism in Algorithms and Architectures (Orlando, FL,
USA) (SPAA ’23). Association for Computing Machinery, New York, NY, USA, 213–226. doi:10.1145/3558481.3591102

[24] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from

the ground up: A modular foundation for higher-order concurrent separation logic. J. Funct. Program. 28 (2018), e20.
doi:10.1017/S0956796818000151

[25] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015.

Iris: Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015.
ACM, 637–650. doi:10.1145/2676726.2676980

[26] Jeehoon Kang and Jaehwang Jung. 2020. A Marriage of Pointer- and Epoch-Based Reclamation. In Proceedings of
the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation (London, UK) (PLDI 2020).
Association for Computing Machinery, New York, NY, USA, 314–328. doi:10.1145/3385412.3385978

[27] Max Khizhinsky. 2024. CDS C++ library. https://github.com/khizmax/libcds.

[28] Jeonghyeon Kim, Jaehwang Jung, and Jeehoon Kang. 2024. Expediting Hazard Pointers with Bounded RCU Critical

Sections. In Proceedings of the 36th ACM Symposium on Parallelism in Algorithms and Architectures (Nantes, France)
(SPAA ’24). Association for Computing Machinery, New York, NY, USA, 1–13. doi:10.1145/3626183.3659941

[29] Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017. Interactive proofs in higher-order concurrent separation

logic. SIGPLAN Not. 52, 1 (Jan. 2017), 205–217. doi:10.1145/3093333.3009855
[30] Janggun Lee, Jeonghyeon Kim, and Jeehoon Kang. 2025. Leveraging Immutability to Validate Hazard Pointers for

Optimistic Traversals (artifact and appendix). doi:10.5281/zenodo.15183251 Project webpage: https://cp.kaist.ac.kr/gc.

[31] Linux Programmer’s Manual. 2025. membarrier(2) - Linux manual page. http://man7.org/linux/man-pages/man2/

membarrier.2.html

[32] Linux Programmer’s Manual. 2025. signal(7) — Linux manual page. https://man7.org/linux/man-pages/man7/signal.7.

html

[33] P. E. McKenney and J. D. Slingwine. 1998. Read-copy update: Using execution history to solve concurrency problems.

In PDCS ’98.
[34] Maged M. Michael. 2002. High Performance Dynamic Lock-Free Hash Tables and List-Based Sets. In Proceedings of the

Fourteenth Annual ACM Symposium on Parallel Algorithms and Architectures (Winnipeg, Manitoba, Canada) (SPAA ’02).
Association for Computing Machinery, New York, NY, USA, 73–82. doi:10.1145/564870.564881

[35] Maged M. Michael. 2002. Safe Memory Reclamation for Dynamic Lock-Free Objects Using Atomic Reads and Writes.

In Proceedings of the Twenty-First Annual Symposium on Principles of Distributed Computing (Monterey, California)

(PODC ’02). Association for Computing Machinery, New York, NY, USA, 21–30. doi:10.1145/571825.571829

[36] Maged M. Michael. 2004. Hazard Pointers: Safe Memory Reclamation for Lock-Free Objects. IEEE Trans. Parallel
Distrib. Syst. 15, 6 (June 2004), 491–504. doi:10.1109/TPDS.2004.8

[37] Maged M. Michael. 2020. Brief Announcement: Hazard Pointer Protection of Structures with Immutable Links. In

Proceedings of the 39th Symposium on Principles of Distributed Computing (Virtual Event, Italy) (PODC ’20). Association
for Computing Machinery, New York, NY, USA, 230–232. doi:10.1145/3382734.3405738

[38] Maged M. Michael and Michael L. Scott. 1996. Simple, Fast, and Practical Non-Blocking and Blocking Concurrent

Queue Algorithms. In Proceedings of the Fifteenth Annual ACM Symposium on Principles of Distributed Computing
(Philadelphia, Pennsylvania, USA) (PODC ’96). Association for Computing Machinery, New York, NY, USA, 267–275.

doi:10.1145/248052.248106

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 148. Publication date: June 2025.

https://doi.org/10.1145/78969.78972
https://hdl.handle.net/2262/77623
https://doi.org/10.1145/2312005.2312036
https://doi.org/10.1145/3656383
https://doi.org/10.1145/3622827
https://doi.org/10.1145/3558481.3591102
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/3385412.3385978
https://github.com/khizmax/libcds
https://doi.org/10.1145/3626183.3659941
https://doi.org/10.1145/3093333.3009855
https://doi.org/10.5281/zenodo.15183251
https://cp.kaist.ac.kr/gc
http://man7.org/linux/man-pages/man2/membarrier.2.html
http://man7.org/linux/man-pages/man2/membarrier.2.html
https://man7.org/linux/man-pages/man7/signal.7.html
https://man7.org/linux/man-pages/man7/signal.7.html
https://doi.org/10.1145/564870.564881
https://doi.org/10.1145/571825.571829
https://doi.org/10.1109/TPDS.2004.8
https://doi.org/10.1145/3382734.3405738
https://doi.org/10.1145/248052.248106

148:22 Janggun Lee, Jeonghyeon Kim, and Jeehoon Kang

[39] Aravind Natarajan and Neeraj Mittal. 2014. Fast Concurrent Lock-Free Binary Search Trees. In Proceedings of the
19th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (Orlando, Florida, USA) (PPoPP ’14).
Association for Computing Machinery, New York, NY, USA, 317–328. doi:10.1145/2555243.2555256

[40] Aravind Natarajan, Arunmoezhi Ramachandran, and Neeraj Mittal. 2020. FEAST: A Lightweight Lock-free Concurrent

Binary Search Tree. ACM Trans. Parallel Comput. 7, 2, Article 10 (May 2020), 64 pages. doi:10.1145/3391438

[41] Ruslan Nikolaev and Binoy Ravindran. 2020. Universal Wait-Free Memory Reclamation. Association for Computing

Machinery, New York, NY, USA, 130–143. https://doi.org/10.1145/3332466.3374540

[42] Ruslan Nikolaev and Binoy Ravindran. 2021. Snapshot-Free, Transparent, and Robust Memory Reclamation for Lock-

Free Data Structures. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation (Virtual, Canada) (PLDI 2021). Association for Computing Machinery, New York, NY, USA,

987–1002. doi:10.1145/3453483.3454090

[43] Ruslan Nikolaev and Binoy Ravindran. 2024. A Family of Fast and Memory Efficient Lock- and Wait-Free Reclamation.

Proc. ACM Program. Lang. 8, PLDI, Article 235 (June 2024), 25 pages. doi:10.1145/3658851
[44] Matthew Parkinson, Dimitrios Vytiniotis, Kapil Vaswani, Manuel Costa, Pantazis Deligiannis, Dylan McDermott,

Aaron Blankstein, and Jonathan Balkind. 2017. Project Snowflake: Non-Blocking Safe Manual Memory Management

in .NET. Proc. ACM Program. Lang. 1, OOPSLA, Article 95 (oct 2017), 25 pages. doi:10.1145/3141879
[45] Arunmoezhi Ramachandran and Neeraj Mittal. 2015. A Fast Lock-Free Internal Binary Search Tree. In Proceedings of

the 16th International Conference on Distributed Computing and Networking (Goa, India) (ICDCN ’15). Association for

Computing Machinery, New York, NY, USA, Article 37, 10 pages. doi:10.1145/2684464.2684472

[46] Pedro Ramalhete and Andreia Correia. 2017. Brief Announcement: Hazard Eras - Non-Blocking Memory Reclamation.

In Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Architectures (Washington, DC, USA)

(SPAA ’17). Association for Computing Machinery, New York, NY, USA, 367–369. doi:10.1145/3087556.3087588

[47] Nir N Shavit, Yosef Lev, and Maurice P Herlihy. 2011. Concurrent lock-free skiplist with wait-free contains operator.

https://patentcenter.uspto.gov/applications/12191008 US Patent 7,937,378.

[48] Gali Sheffi, Maurice Herlihy, and Erez Petrank. 2021. VBR: Version Based Reclamation. In 35th International Symposium
onDistributed Computing (DISC 2021) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 209), Seth Gilbert (Ed.).
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 35:1–35:18. doi:10.4230/LIPIcs.DISC.2021.35

[49] Gali Sheffi and Erez Petrank. 2022. The ERA Theorem for Safe Memory Reclamation. arXiv:2211.04351 [cs.DC]

https://arxiv.org/abs/2211.04351

[50] Gali Sheffi and Erez Petrank. 2023. The ERA Theorem for Safe Memory Reclamation. In Proceedings of the 2023
ACM Symposium on Principles of Distributed Computing (Orlando, FL, USA) (PODC ’23). Association for Computing

Machinery, New York, NY, USA, 102–112. doi:10.1145/3583668.3594564

[51] Ajay Singh, Trevor Brown, and Ali Mashtizadeh. 2021. NBR: Neutralization Based Reclamation. In Proceedings of the
26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (Virtual Event, Republic of Korea)

(PPoPP ’21). Association for Computing Machinery, New York, NY, USA, 175–190. doi:10.1145/3437801.3441625

[52] Anubhav Srivastava and Trevor Brown. 2022. Elimination (a,b)-trees with fast, durable updates. In Proceedings of the
27th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (Seoul, Republic of Korea) (PPoPP
’22). Association for Computing Machinery, New York, NY, USA, 416–430. doi:10.1145/3503221.3508441

[53] R.K. Treiber. 1986. Systems Programming: Coping with Parallelism. International Business Machines Incorporated,

Thomas J. Watson Research Center. https://books.google.co.kr/books?id=YQg3HAAACAAJ

[54] Haosen Wen, Joseph Izraelevitz, Wentao Cai, H. Alan Beadle, and Michael L. Scott. 2018. Interval-Based Memory

Reclamation. In Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(Vienna, Austria) (PPoPP ’18). Association for Computing Machinery, New York, NY, USA, 1–13. doi:10.1145/3178487.

3178488

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 148. Publication date: June 2025.

https://doi.org/10.1145/2555243.2555256
https://doi.org/10.1145/3391438
https://doi.org/10.1145/3332466.3374540
https://doi.org/10.1145/3453483.3454090
https://doi.org/10.1145/3658851
https://doi.org/10.1145/3141879
https://doi.org/10.1145/2684464.2684472
https://doi.org/10.1145/3087556.3087588
https://patentcenter.uspto.gov/applications/12191008
https://doi.org/10.4230/LIPIcs.DISC.2021.35
https://arxiv.org/abs/2211.04351
https://arxiv.org/abs/2211.04351
https://doi.org/10.1145/3583668.3594564
https://doi.org/10.1145/3437801.3441625
https://doi.org/10.1145/3503221.3508441
https://books.google.co.kr/books?id=YQg3HAAACAAJ
https://doi.org/10.1145/3178487.3178488
https://doi.org/10.1145/3178487.3178488

Leveraging Immutability to Validate Hazard Pointers for Optimistic Traversals 148:23

A AMD64T Full Experimental Results
A.1 Small Key Ranges (1K for Lists and 100K for Others)
A.1.1 Write-only Workloads.

NR RCU PEBR VBR

HP with Valimmut HP++ HP-BRCU CIRC0-HP CDRC-HP

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HList/HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

20

40

60

80

100

120

140

160

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

20

40

60

80

Th
ro

ug
hp

ut
 (M

 o
p/

s)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

10

20

30

40

50

60

Th
ro

ug
hp

ut
 (M

 o
p/

s)

SkipList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

20

40

60

80

100

120

140
Th

ro
ug

hp
ut

 (M
 o

p/
s)

ElimAbTree

Fig. 16. Throughput (million operations per second) of write-only workloads for a varying number of threads.

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

20

40

60

80

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HList/HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

10

20

30

40

50

60

70

80

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

10

20

30

40

50

60

70

80

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

50

100

150

200

250

300

350

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

SkipList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

20

40

60

80

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

ElimAbTree

Fig. 17. Peak memory usage of write-only workloads for a varying number of threads.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 148. Publication date: June 2025.

148:24 Janggun Lee, Jeonghyeon Kim, and Jeehoon Kang

A.1.2 Read-write Workloads.

NR RCU PEBR VBR

HP with Valimmut HP++ HP-BRCU CIRC0-HP CDRC-HP

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

5

10

15

20

25

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HList
1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

5

10

15

20

25

Th
ro

ug
hp

ut
 (M

 o
p/

s)
HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

25

50

75

100

125

150

175

200

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

20

40

60

80

100

Th
ro

ug
hp

ut
 (M

 o
p/

s)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

20

40

60

80

Th
ro

ug
hp

ut
 (M

 o
p/

s)

SkipList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

25

50

75

100

125

150

175
Th

ro
ug

hp
ut

 (M
 o

p/
s)

ElimAbTree

Fig. 18. Throughput (million operations per second) of read-write workloads for a varying number of threads.

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

10

20

30

40

50

60

70

80

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

20

40

60

80

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

10

20

30

40

50

60

70

80

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

20

40

60

80

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

50

100

150

200

250

300

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

SkipList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

10

20

30

40

50

60

70

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

ElimAbTree

Fig. 19. Peak memory usage of read-write workloads for a varying number of threads.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 148. Publication date: June 2025.

Leveraging Immutability to Validate Hazard Pointers for Optimistic Traversals 148:25

A.1.3 Read-intensive Workloads.

NR RCU PEBR VBR

HP with Valimmut HP++ HP-BRCU CIRC0-HP CDRC-HP

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

10

20

30

40

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HList
1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

10

20

30

40

50
Th

ro
ug

hp
ut

 (M
 o

p/
s)

HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

50

100

150

200

250

300

350

400

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

20

40

60

80

100

120

140

160

Th
ro

ug
hp

ut
 (M

 o
p/

s)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

20

40

60

80

100

120

Th
ro

ug
hp

ut
 (M

 o
p/

s)

SkipList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

50

100

150

200

250

Th
ro

ug
hp

ut
 (M

 o
p/

s)

ElimAbTree

Fig. 20. Throughput (million operations per second) of read-intensive workloads for a varying number of
threads.

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

20

40

60

80

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

20

40

60

80

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

20

40

60

80

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

20

40

60

80

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

20

40

60

80

100

120

140

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

SkipList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

10

20

30

40

50

60

70

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

ElimAbTree

Fig. 21. Peak memory usage of read-intensive workloads for a varying number of threads.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 148. Publication date: June 2025.

148:26 Janggun Lee, Jeonghyeon Kim, and Jeehoon Kang

A.2 Large Key Ranges (10K for Lists and 100M for Others)
A.2.1 Write-only Workloads.

NR RCU PEBR VBR

HP with Valimmut HP++ HP-BRCU CIRC0-HP CDRC-HP

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HList/HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

5

10

15

20

25

Th
ro

ug
hp

ut
 (M

 o
p/

s)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Th
ro

ug
hp

ut
 (M

 o
p/

s)

SkipList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

10

20

30

40

50

60
Th

ro
ug

hp
ut

 (M
 o

p/
s)

ElimAbTree

Fig. 22. Throughput (million operations per second) of write-only workloads for a varying number of threads.

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

20

40

60

80

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HList/HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

1200

1220

1240

1260

1280

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

3600

3800

4000

4200

4400

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

12000

12500

13000

13500

14000

14500

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

SkipList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

2750

3000

3250

3500

3750

4000

4250

4500

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

ElimAbTree

Fig. 23. Peak memory usage of write-only workloads for a varying number of threads.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 148. Publication date: June 2025.

Leveraging Immutability to Validate Hazard Pointers for Optimistic Traversals 148:27

A.2.2 Read-write Workloads.

NR RCU PEBR VBR

HP with Valimmut HP++ HP-BRCU CIRC0-HP CDRC-HP

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HList
1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

1

2

3

4

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

5

10

15

20

25

Th
ro

ug
hp

ut
 (M

 o
p/

s)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Th
ro

ug
hp

ut
 (M

 o
p/

s)

SkipList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

10

20

30

40

50

60

70
Th

ro
ug

hp
ut

 (M
 o

p/
s)

ElimAbTree

Fig. 24. Throughput (million operations per second) of read-write workloads for a varying number of threads.

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

20

40

60

80

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

20

40

60

80

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

1200

1220

1240

1260

1280

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

3600

3700

3800

3900

4000

4100

4200

4300

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

12000

12250

12500

12750

13000

13250

13500

13750

14000

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

SkipList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

2600

2800

3000

3200

3400

3600

3800

4000

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

ElimAbTree

Fig. 25. Peak memory usage of read-write workloads for a varying number of threads.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 148. Publication date: June 2025.

148:28 Janggun Lee, Jeonghyeon Kim, and Jeehoon Kang

A.2.3 Read-intensive Workloads.

NR RCU PEBR VBR

HP with Valimmut HP++ HP-BRCU CIRC0-HP CDRC-HP

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HList
1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Th
ro

ug
hp

ut
 (M

 o
p/

s)
HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

5

10

15

20

25

30

Th
ro

ug
hp

ut
 (M

 o
p/

s)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

5

10

15

20

Th
ro

ug
hp

ut
 (M

 o
p/

s)

SkipList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

10

20

30

40

50

60

70

Th
ro

ug
hp

ut
 (M

 o
p/

s)

ElimAbTree

Fig. 26. Throughput (million operations per second) of read-intensive workloads for a varying number of
threads.

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

20

40

60

80

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

20

40

60

80

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

1200

1210

1220

1230

1240

1250

1260

1270

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

3600

3650

3700

3750

3800

3850

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

12000

12100

12200

12300

12400

12500

12600

12700

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

SkipList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

2500

2600

2700

2800

2900

3000

3100

3200

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

ElimAbTree

Fig. 27. Peak memory usage of read-intensive workloads for a varying number of threads.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 148. Publication date: June 2025.

Leveraging Immutability to Validate Hazard Pointers for Optimistic Traversals 148:29

A.3 Comparison of Traversals with and without Optimism

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

5

10

15

20

25

30

35

40

Th
ro

ug
hp

ut
 (M

 o
p/

s)
HHSList v.s. HMList

HHSList
HMList

(a) Lists with key range 100.

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

20

40

60

80

Th
ro

ug
hp

ut
 (M

 o
p/

s)

NMTree v.s. EFRBTree

NMTree
EFRBTree

(b) Trees with key range 100K.

Fig. 28. Throughput (million operations per second) for a varying number of threads of read-write workloads
for list and tree.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 148. Publication date: June 2025.

148:30 Janggun Lee, Jeonghyeon Kim, and Jeehoon Kang

B Intel96T Full Experimental Results
B.1 Small Key Ranges (1K for Lists and 100K for Others)
B.1.1 Write-only Workloads.

NR RCU PEBR VBR

HP with Valimmut HP++ HP-BRCU CIRC0-HP CDRC-HP

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

5

10

15

20

25

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HList/HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

50

100

150

200

250

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

20

40

60

80

100

120

Th
ro

ug
hp

ut
 (M

 o
p/

s)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

20

40

60

80

Th
ro

ug
hp

ut
 (M

 o
p/

s)

SkipList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

20

40

60

80

100

120

140

160
Th

ro
ug

hp
ut

 (M
 o

p/
s)

ElimAbTree

Fig. 29. Throughput (million operations per second) of write-only workloads for a varying number of threads.

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

5

10

15

20

25

30

35

Pe
ak

 u
nr

ec
la

im
ed

 n
od

es
 (×

10
⁴)

HList/HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

10

20

30

40

50

60

70

80

Pe
ak

 u
nr

ec
la

im
ed

 n
od

es
 (×

10
⁴)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

20

40

60

80

100

120

140

Pe
ak

 u
nr

ec
la

im
ed

 n
od

es
 (×

10
⁴)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

10

20

30

40

50

60

Pe
ak

 u
nr

ec
la

im
ed

 n
od

es
 (×

10
⁴)

SkipList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

2

4

6

8

10

Pe
ak

 u
nr

ec
la

im
ed

 n
od

es
 (×

10
⁴)

ElimAbTree

Fig. 30. Peak memory usage of write-only workloads for a varying number of threads.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 148. Publication date: June 2025.

Leveraging Immutability to Validate Hazard Pointers for Optimistic Traversals 148:31

B.1.2 Read-write Workloads.

NR RCU PEBR VBR

HP with Valimmut HP++ HP-BRCU CIRC0-HP CDRC-HP

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

5

10

15

20

25

30

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HList
1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

5

10

15

20

25

30

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

50

100

150

200

250

300

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

20

40

60

80

100

120

140

Th
ro

ug
hp

ut
 (M

 o
p/

s)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

20

40

60

80

100

Th
ro

ug
hp

ut
 (M

 o
p/

s)

SkipList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

25

50

75

100

125

150

175

200
Th

ro
ug

hp
ut

 (M
 o

p/
s)

ElimAbTree

Fig. 31. Throughput (million operations per second) of read-write workloads for a varying number of threads.

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

5

10

15

20

25

Pe
ak

 u
nr

ec
la

im
ed

 n
od

es
 (×

10
⁴)

HList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

5

10

15

20

25

30

Pe
ak

 u
nr

ec
la

im
ed

 n
od

es
 (×

10
⁴)

HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

10

20

30

40

50

60

Pe
ak

 u
nr

ec
la

im
ed

 n
od

es
 (×

10
⁴)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

20

40

60

80

100

120

Pe
ak

 u
nr

ec
la

im
ed

 n
od

es
 (×

10
⁴)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

10

20

30

40

Pe
ak

 u
nr

ec
la

im
ed

 n
od

es
 (×

10
⁴)

SkipList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

2

4

6

8

10

Pe
ak

 u
nr

ec
la

im
ed

 n
od

es
 (×

10
⁴)

ElimAbTree

Fig. 32. Peak memory usage of read-write workloads for a varying number of threads.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 148. Publication date: June 2025.

148:32 Janggun Lee, Jeonghyeon Kim, and Jeehoon Kang

B.1.3 Read-intensive Workloads.

NR RCU PEBR VBR

HP with Valimmut HP++ HP-BRCU CIRC0-HP CDRC-HP

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

10

20

30

40

50

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HList
1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

10

20

30

40

50

Th
ro

ug
hp

ut
 (M

 o
p/

s)
HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

100

200

300

400

500

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

25

50

75

100

125

150

175

200

Th
ro

ug
hp

ut
 (M

 o
p/

s)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

20

40

60

80

100

120

140

Th
ro

ug
hp

ut
 (M

 o
p/

s)

SkipList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

50

100

150

200

250

300

Th
ro

ug
hp

ut
 (M

 o
p/

s)

ElimAbTree

Fig. 33. Throughput (million operations per second) of read-intensive workloads for a varying number of
threads.

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

2

4

6

8

10

12

14

Pe
ak

 u
nr

ec
la

im
ed

 n
od

es
 (×

10
⁴)

HList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

2

4

6

8

10

12

Pe
ak

 u
nr

ec
la

im
ed

 n
od

es
 (×

10
⁴)

HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

10

20

30

40

Pe
ak

 u
nr

ec
la

im
ed

 n
od

es
 (×

10
⁴)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

10

20

30

40

50

60

Pe
ak

 u
nr

ec
la

im
ed

 n
od

es
 (×

10
⁴)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Pe
ak

 u
nr

ec
la

im
ed

 n
od

es
 (×

10
⁴)

SkipList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

2

4

6

8

10

Pe
ak

 u
nr

ec
la

im
ed

 n
od

es
 (×

10
⁴)

ElimAbTree

Fig. 34. Peak memory usage of read-intensive workloads for a varying number of threads.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 148. Publication date: June 2025.

Leveraging Immutability to Validate Hazard Pointers for Optimistic Traversals 148:33

B.2 Large Key Ranges (10K for Lists and 100M for Others)
B.2.1 Write-only Workloads.

NR RCU PEBR VBR

HP with Valimmut HP++ HP-BRCU CIRC0-HP CDRC-HP

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

1

2

3

4

5

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HList/HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

5

10

15

20

25

30

Th
ro

ug
hp

ut
 (M

 o
p/

s)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Th
ro

ug
hp

ut
 (M

 o
p/

s)

SkipList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

10

20

30

40

50

60
Th

ro
ug

hp
ut

 (M
 o

p/
s)

ElimAbTree

Fig. 35. Throughput (million operations per second) of write-only workloads for a varying number of threads.

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

2

4

6

8

10

Pe
ak

 u
nr

ec
la

im
ed

 n
od

es
 (×

10
⁴)

HList/HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

1

2

3

4

5

Pe
ak

 u
nr

ec
la

im
ed

 n
od

es
 (×

10
⁴)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

20

40

60

80

Pe
ak

 u
nr

ec
la

im
ed

 n
od

es
 (×

10
⁴)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

10

20

30

40

Pe
ak

 u
nr

ec
la

im
ed

 n
od

es
 (×

10
⁴)

SkipList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

5

10

15

20

25

30

Pe
ak

 u
nr

ec
la

im
ed

 n
od

es
 (×

10
⁴)

ElimAbTree

Fig. 36. Peak memory usage of write-only workloads for a varying number of threads.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 148. Publication date: June 2025.

148:34 Janggun Lee, Jeonghyeon Kim, and Jeehoon Kang

B.2.2 Read-write Workloads.

NR RCU PEBR VBR

HP with Valimmut HP++ HP-BRCU CIRC0-HP CDRC-HP

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

1

2

3

4

5

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HList
1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

1

2

3

4

5

Th
ro

ug
hp

ut
 (M

 o
p/

s)
HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

5

10

15

20

25

30

Th
ro

ug
hp

ut
 (M

 o
p/

s)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

5

10

15

20

Th
ro

ug
hp

ut
 (M

 o
p/

s)

SkipList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

10

20

30

40

50

60

70
Th

ro
ug

hp
ut

 (M
 o

p/
s)

ElimAbTree

Fig. 37. Throughput (million operations per second) of read-write workloads for a varying number of threads.

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

1

2

3

4

5

Pe
ak

 u
nr

ec
la

im
ed

 n
od

es
 (×

10
⁴)

HList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

1

2

3

4

5

Pe
ak

 u
nr

ec
la

im
ed

 n
od

es
 (×

10
⁴)

HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

1

2

3

4

5

Pe
ak

 u
nr

ec
la

im
ed

 n
od

es
 (×

10
⁴)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

10

20

30

40

50

60

Pe
ak

 u
nr

ec
la

im
ed

 n
od

es
 (×

10
⁴)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

5

10

15

20

Pe
ak

 u
nr

ec
la

im
ed

 n
od

es
 (×

10
⁴)

SkipList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Pe
ak

 u
nr

ec
la

im
ed

 n
od

es
 (×

10
⁴)

ElimAbTree

Fig. 38. Peak memory usage of read-write workloads for a varying number of threads.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 148. Publication date: June 2025.

Leveraging Immutability to Validate Hazard Pointers for Optimistic Traversals 148:35

B.2.3 Read-intensive Workloads.

NR RCU PEBR VBR

HP with Valimmut HP++ HP-BRCU CIRC0-HP CDRC-HP

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

1

2

3

4

5

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

1

2

3

4

5

6
Th

ro
ug

hp
ut

 (M
 o

p/
s)

HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

5

10

15

20

25

30

Th
ro

ug
hp

ut
 (M

 o
p/

s)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

5

10

15

20

Th
ro

ug
hp

ut
 (M

 o
p/

s)

SkipList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

20

40

60

80

Th
ro

ug
hp

ut
 (M

 o
p/

s)

ElimAbTree

Fig. 39. Throughput (million operations per second) of read-intensive workloads for a varying number of
threads.

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

1

2

3

4

5

Pe
ak

 u
nr

ec
la

im
ed

 n
od

es
 (×

10
⁴)

HList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

1

2

3

4

5

Pe
ak

 u
nr

ec
la

im
ed

 n
od

es
 (×

10
⁴)

HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

2

4

6

8

Pe
ak

 u
nr

ec
la

im
ed

 n
od

es
 (×

10
⁴)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

5

10

15

20

Pe
ak

 u
nr

ec
la

im
ed

 n
od

es
 (×

10
⁴)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

1

2

3

4

5

6

Pe
ak

 u
nr

ec
la

im
ed

 n
od

es
 (×

10
⁴)

SkipList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

2

4

6

8

Pe
ak

 u
nr

ec
la

im
ed

 n
od

es
 (×

10
⁴)

ElimAbTree

Fig. 40. Peak memory usage of read-intensive workloads for a varying number of threads.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 148. Publication date: June 2025.

148:36 Janggun Lee, Jeonghyeon Kim, and Jeehoon Kang

B.3 Comparison of Traversals with and without Optimism

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

5

10

15

20

25

30

35

40
Th

ro
ug

hp
ut

 (M
 o

p/
s)

HHSList v.s. HMList

HHSList
HMList

(a) Lists with key range 100.

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

Threads

0

20

40

60

80

100

Th
ro

ug
hp

ut
 (M

 o
p/

s)

NMTree v.s. EFRBTree

NMTree
EFRBTree

(b) Trees with key range 100K.

Fig. 41. Throughput (million operations per second) for a varying number of threads of read-write workloads
for list and tree.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 148. Publication date: June 2025.

Leveraging Immutability to Validate Hazard Pointers for Optimistic Traversals 148:37

Received 2024-11-13; accepted 2025-03-06

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 148. Publication date: June 2025.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Hazard Pointers
	2.2 Applying Hazard Pointers using Valmark to Michael's List
	2.3 Inapplicability of Hazard Pointers using Valmark to Harris's List
	2.4 Prior Approahces to Applying Hazard Pointers to Optimistic Traversals

	3 Immutability-Based Validation
	3.1 Harris's List Revisited
	3.2 Natarajan-Mittal Tree
	3.3 Shavit-Lev-Herlihy Skiplist
	3.4 Applicability of HP with Valimmut

	4 Formal Verification
	4.1 Background
	4.2 Proof of Validation in Harris's List

	5 Performance Evaluation
	6 Related and Future Work
	Acknowledgments
	References
	A AMD64T Full Experimental Results
	A.1 Small Key Ranges (1K for Lists and 100K for Others)
	A.2 Large Key Ranges (10K for Lists and 100M for Others)
	A.3 Comparison of Traversals with and without Optimism

	B Intel96T Full Experimental Results
	B.1 Small Key Ranges (1K for Lists and 100K for Others)
	B.2 Large Key Ranges (10K for Lists and 100M for Others)
	B.3 Comparison of Traversals with and without Optimism

