
Applying Hazard Pointers to More Concurrent Data Structures
Jaehwang Jung

jaehwang.jung@kaist.ac.kr
KAIST

Daejeon, Republic of Korea

Janggun Lee
janggun.lee@kaist.ac.kr

KAIST
Daejeon, Republic of Korea

Jeonghyeon Kim
jeonghyeon.kim@cp.kaist.ac.kr

KAIST
Daejeon, Republic of Korea

Jeehoon Kang
jeehoon.kang@kaist.ac.kr

KAIST
Daejeon, Republic of Korea

ABSTRACT
Hazard pointers is a popular semi-manual memory reclamation
scheme for concurrent data structures, where each accessing thread
announces the protection of each object to access and validates
that the pointer is not already freed. Validation is typically done
by over-approximating unreachability: if an object seems to be un-
reachable from the root of the data structure, the protecting thread
decides not to access the object as it might have been freed. How-
ever, many efficient data structures are incompatible with validation
by over-approximation as their optimistic traversal strategy inten-
tionally ignores the warning of unreachability to achieve better
performance.

We design HP++, an extension to hazard pointers that supports
optimistic traversal. The key idea is under-approximating unreach-
ability during validation and patching up the potentially unsafe
accesses arising from false-negatives. Thanks to optimistic traver-
sal, data structures with HP++ outperform the same-purpose data
structures with HP under contention while consuming a similar
amount of memory.

CCS CONCEPTS
•Computingmethodologies→Concurrent algorithms; • Soft-
ware and its engineering→ Garbage collection.

KEYWORDS
concurrency, memory management, hazard pointers
ACM Reference Format:
Jaehwang Jung, Janggun Lee, Jeonghyeon Kim, and Jeehoon Kang. 2023. Ap-
plying Hazard Pointers to More Concurrent Data Structures. In Proceedings
of the 35th ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA ’23), June 17–19, 2023, Orlando, FL, USA. ACM, New York, NY, USA,
20 pages. https://doi.org/10.1145/3558481.3591102

1 INTRODUCTION
Designing concurrent data structures is notoriously hard, and mem-
ory reclamation makes it even worse: programmers should syn-
chronize memory accesses with not only other accesses but also

This work is licensed under a Creative Commons Attribution
International 4.0 License.

SPAA ’23, June 17–19, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9545-8/23/06.
https://doi.org/10.1145/3558481.3591102

reclamations of memory blocks. Without proper synchronization,
data structures would incur safety errors such as use-after-free and
more subtle ABA problems [57, 59].

To synchronize memory accesses and reclamations without sig-
nificant overhead in performance and programmability, various
semi-manual memory reclamation schemes for concurrent data
structures have been proposed [1, 2, 11, 28, 30, 39, 42, 43, 45, 46, 54,
56]. The clients of these schemes retire no-longer-used nodes in-
stead of immediately reclaiming them, and the scheme deallocates
retired nodes only when it can prove that no threads will access
the nodes.

Hazard pointers (HP) [45, 46], a popular and one of the earliest
reclamation schemes, requires each thread to explicitly announce
protection of each object before accessing. But announcement alone
does not guarantee the safety of access, because another thread may
have concurrently retired and reclaimed the same object. Therefore,
the thread must validate that the protected pointer is not already
freed. Since it is impossible to precisely decide whether a pointer
is freed, validation is done in a conservative manner that regards
the pointer as unsafe to access if it might have been freed. That is,
validation over-approximates the freed pointer set. Specifically, if
an object is detached (made unreachable) from the data structure,
it might have been retired and freed. In practice, the unreachable
pointer set is further over-approximated, because it is still inefficient
to precisely check the reachability of objects. For example, Harris-
Michael list [44] uses the logical deletion mark of a node to over-
approximate the unreachability of the next node (see §2.2).

Problem. HP is not applicable to many high-performance data
structures [9, 24, 30, 34, 36, 48, 50] that optimistically traverse the
nodes. Their traversal follows the link to the next node even when
the next node might have been detached from the data structure.
This is fundamentally incompatible with HP’s validation by over-
approximating unreachability. Therefore, to use HP, the data struc-
ture must forgo optimistic traversal. As a result, HP-compatible
data structures are significantly outperformed by the same-purpose
data structures utilizing optimistic traversal [16] (see §5 for our
experimental evaluation).

The reclamation schemes supporting optimistic traversal, how-
ever, exhibit different trade-offs. RCU [42, 43] and EBR [28, 30] are
not robust in that a single non-cooperative thread renders the num-
ber of retired and yet unreclaimed pointers unbounded. NBR [56]
relies on a non-local jump that mandates a specific structure of data
structure operations. NBR and PEBR [39] do not properly support

1

https://orcid.org/0000-0001-6099-2644
https://orcid.org/0009-0002-0047-7717
https://orcid.org/0009-0000-7070-3578
https://orcid.org/0000-0002-2115-0871
https://doi.org/10.1145/3558481.3591102
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3558481.3591102

SPAA ’23, June 17–19, 2023, Orlando, FL, USA Jaehwang Jung, Janggun Lee, Jeonghyeon Kim, and Jeehoon Kang

Figure 1: HP++ allows accessing the objects that are not in an
under-approximation of unreachable object set, and patches up the
unsafe accesses to objects that are retired but not in the under-
approximation.

Algorithm 1 Abstract hazard pointers.
1: function Protect(𝑝)
2: Announce protection of 𝑝 .
3: Check if 𝑝 is not retired. If retired, fail.
4: function Reclaim(𝑝)
5: Announce retirement of 𝑝 .
6: Check if 𝑝 is protected. If protected, retry later.

long-running operations because they are likely to be forcefully
terminated. VBR [54] requires a custom allocator that preserves the
type of memory blocks and maintains per-block metadata for fully
optimistic access to possibly reclaimed objects.

Solution. We design HP++, a backward-compatible extension for
HP to improve applicability by enabling optimistic traversal. The
key idea is under-approximating the unreachability in validation
to allow optimistic traversal by letting the deleter mark the node
after detaching, and patching up the potentially unsafe accesses
arising from false-negatives by letting the deleter protect such
pointers (Figure 1). Thanks to optimistic traversal, data structures
with HP++ outperform the same-purpose data structures with HP
under contention while consuming a similar amount of memory.

Outline. We discuss background and motivation (§2), present our
design (§3), analyze its safety, applicability, progress, and robustness
(§4), evaluate its performance (§5), and discuss related work (§6).

2 BACKGROUND AND MOTIVATION
We review hazard pointers (§2.1), its protection validation strategy
based on the over-approximation of unreachability (§2.2), and its
drawback that it does not support efficient concurrent data struc-
tures using optimistic traversal (§2.3).We also review the drawbacks
of other reclamation schemes supporting optimistic traversal (§2.4).

2.1 Hazard Pointers
Hazard pointers (HP) [45, 46], a popular and one of the earliest
reclamation schemes, guarantee safety by avoiding the reclamation
of pointers that are explicitly announced to be in use. Algorithm 1
outlines the high-level architecture of HP.

1: loop
2: h← head.load()

3: hp.set(h)

4: if h ≠ head.load() then continue
5: n← (*h).next.load()

6: ...

Figure 2: Pop function of Treiber’s stack with HP.

On the one hand, a thread attempting to access a pointer, say 𝑝 ,
announces that 𝑝 is a hazard pointer. But announcement alone does
not guarantee the safety of access because another thread may have
concurrently retired and reclaimed the same pointer beforehand.
To ensure that 𝑝 is safe to access, the thread must validate the
protection by checking that 𝑝 is not already retired. If the check
fails, the thread should recover from the failure. On the other hand,
when a thread wants to reclaim 𝑝 , it first announces that 𝑝 is retired
and then checks if anyone has announced the protection of 𝑝 . If no
one has announced, then it is safe to free 𝑝 .

The safety of HP follows from a case analysis on the execution
order.1 (1) If line 2 happens before line 6, the reclaimer will not free
𝑝 . (2) If line 5 happens before line 3, the accessor will not access 𝑝 .
In either case, use-after-free does not occur.

Algorithm 2 presents an implementation of HP.2 To implement
protection notification (lines 2 and 6 of Algorithm 1), the algorithm
maintains hazards, a global list of single-writer-multi-reader slots
that store hazard pointers. When a thread wants to protect a pointer
𝑝 (TryProtect), it first acquires a slot in hazards (MakeHazptr),
and then writes 𝑝 to the obtained slot (line 6). When a thread wants
to free a pointer (Retire), it first adds the pointer to retired, the bag
of retired pointers, and periodically triggers reclamation (Reclaim)
that takes pointers from retireds and scans hazards to free only the
unprotected retired pointers (line 16).

Implementing retirement notification (lines 3 and 5 of Algorithm
1) is more difficult. Naively applying the same approach as the
protection notification—querying retireds—is neither correct nor
efficient, because retired pointers might have been already removed
from retireds and freed, and looking up retireds whenever protect-
ing a pointer incurs non-negligible cost. For correct and efficient
retirement notifications, HP exploits the requirement of retiring a
node: it must have been made unreachable from the entry point
of the data structure. If the protector detects that the pointer to
protect is unreachable, it decides that it could have been already
retired. In other words, the protector over-approximates the retired
pointer set as the unreachable pointer set.

2.2 Over-approximating Unreachability
However, precisely checking the reachability of an arbitrary node
would require many link traversals, rendering it still impractical.
As such, concurrent data structures using HP usually perform a
further over-approximation as follows.

1For this case analysis to be sound in a weakly consistent memory model, store-load
memory barriers, or sequential consistency (SC) fences are required between line 2
(resp. line 5) and line 6 (resp. line 3). See Algorithm 2.
2We assume C/C++’s memory model, where fence(SC) corresponds to
atomic_thread_fence(memory_order_seq_cst). To keep the presentation con-
cise, we omit the release-acquire synchronizations, which are more straightforward.

2

Applying Hazard Pointers to More Concurrent Data Structures SPAA ’23, June 17–19, 2023, Orlando, FL, USA

Algorithm 2 Implementation of hazard pointers.
global variables:

1: retireds: ConcurrentStack<void*>
2: hazards: ConcurrentList<HazptrRecord>
3: function MakeHazptr()→ Hazptr
4: Acquire a HazptrRecord in hazards and return its reference
5: function TryProtect(hp: &Hazptr, ptr: T*)→ bool

6: hp.set(ptr)

7: fence(SC)

8: returnwhether ptr is reachable from the entry point of data structure
9: function Retire(ptr: void*)
10: retireds.push(ptr)

11: Call Reclaim according to configuration
12: function Reclaim()
13: rs← retireds.pop_all()

14: fence(SC)

15: for r ∈ rs do
16: if r ∈ hazards then retireds.add(r)

17: else free(r)

1: prev_link← head

2: cur← head.load()

3: while cur ≠ null do
4: hp_cur.set(cur)

5: if prev_link.load() ≠ cur then retry from the beginning
6: (next, tag)← decompose_tagged_ptr((*cur).next.load())

7: if tag = 1 then
8: try physically deleting cur and continue
9: else
10: if cur is at the desired position then return
11: prev_link← &(*cur).next

12: swap(&hp_cur, &hp_prev)

13: cur← next

(a) Line 3. (b) Line 4.

(c) Line 5, failure case (1). (d) Line 5, failure case (2).

Figure 3: Traversal of Harris-Michael list with HP.

Treiber’s stack. Treiber’s stack [57] is a singly linked list with
its head being the stack’s top. Figure 2 illustrates its Pop function,
which dereferences head to get the first node’s pointer, say 𝑝 (line 2);
dereferences 𝑝 to get the second node’s pointer, say 𝑞 (line 5);
and performs a compare-and-swap (CAS) on head from 𝑝 to 𝑞. As
highlighted in purple , to safely dereference 𝑝 , Pop first announces
the protection of 𝑝 (line 3) and then validates that 𝑝 is still reachable.
For validation, Pop checks that head still contains 𝑝 (line 4). The
condition is a proper over-approximation of reachability, e.g., when
a value is pushed, head points to a new node that points to 𝑝 .

Harris-Michael list. Harris-Michael list [44] is a singly linked
list that allows the insertion and deletion of a node at arbitrary
positions. Deletion of a node first marks the node as logically deleted
by tagging the least significant bit (LSB) of its next node pointer

field, and then tries physically unlinking the node. Logical deletion
prevents creating a link from a removed node to a live node, which
makes the live node get lost.

Figure 3 illustrates the traversal strategy of Harris-Michael list.
Dashed edges represent tagged pointers, blue-boxed nodes are val-
idated protection by the traversing thread, and dash-boxed nodes
have been protected by the traversing thread. (We will discuss pro-
tection shortly.) Traversal starts by initializing prev_link to head
and cur to the pointer to the first node. Then it enters the loop
with the invariant that cur is loaded from prev_link from the last
iteration and its tag is clean (line 3). It initializes next and tag to
the pointer to cur’s next node and its tag (line 6). If the pointer is
tagged, cur is logically deleted so it tries its physical deletion and
continues the loop with a new cur (lines 7-8). If the search key is
found, it returns (line 10). Otherwise, updates prev_link and cur to
cur and next, respectively, for the next iteration (lines 11-13).

The traversal validates the protection of each node without pre-
cisely determining the target node’s unreachability, which would
require checking all the links from the head to the target node.
Instead, it over-approximates the target node’s unreachability by
whether the target node’s previous node is logically deleted, ex-
ploiting the property that only logically deleted nodes are unlinked.
Specifically, the validation compares cur against the current value
of prev_link (line 5). This effectively ensures two conditions at
once: (1) that prev_link still points to cur (similar to validation of
Treiber’s stack), ruling out the case in which the previous node is
still reachable but cur is unlinked from it (Figure 3c); and (2) that
the previous node is not logically deleted, ruling out the case in
which cur is still linked from prev_link but detached from the list as
the previous node is unlinked (Figure 3d). If the validation fails, the
traversal restarts from head. It is worth noting that in the failure
case (1), it is safe to retry protection with the new value of prev_link
without restarting from the head (not shown in the code).

This protection method requires only two hazard pointers ac-
quired in a hand-over-hand fashion: (1) hp_cur that protects the
current target node cur; and (2) hp_prev that protects the previous
node containing prev_link (unless it is head). At the start of the
loop, it first tries protecting cur with hp_cur (line 4); and when a
link is followed, it swaps hp_cur and hp_prev (line 12).

2.3 Inapplicability to Optimistic Traversal
Over-approximation of the retired pointer set, however, renders HP
inapplicable to data structures that optimistically traverse nodes
that might have been deleted to achieve better performance. That
is, they intentionally ignore the warning that the nodes might
have been retired already. Therefore, applying HP’s pessimistic
protection failure defeats the purpose of optimistic traversal.

Harris’s list. Harris’s list [30] is a well-known example of opti-
mistic traversal. It shares the same structure as the Harris-Michael
list but has a different traversal strategy. While the traversal in
Harris-Michael list proceeds carefully, cleaning up the logically
deleted nodes one by one, that in Harris’s list identifies the chain of
logically deleted nodes that directly precedes the destination node
and unlinks the chain at once. That is, Harris’s list allows traversing
a chain of logically deleted nodes. Figure 4 illustrates an example

3

SPAA ’23, June 17–19, 2023, Orlando, FL, USA Jaehwang Jung, Janggun Lee, Jeonghyeon Kim, and Jeehoon Kang

(a) Traverse to logically deleted 𝑝. (b) Proceed to logically deleted 𝑞 (c) Unlink 𝑝 and 𝑞 at once.

Figure 4: Traversal of logically deleted nodes in Harris’s list.

(a) Protection of a freed node 𝑞. (b) Validation of a freed node 𝑞.

Figure 5: Unsafe traversal of logically deleted nodes with HP.

execution: (1) a traversal to 𝑟 sees that 𝑝 is logically deleted (Figure
4a); (2) instead of deleting 𝑝 as in Harris-Michael list, proceeds to 𝑞
and sees that 𝑞 is logically deleted (Figure 4b); and (3) proceeds to
find the target 𝑟 , and unlinks 𝑝 and 𝑞 (Figure 4c).

Optimistic traversal has two performance advantages. (1) Fewer
CAS attempts: since the thread that logically deleted a node will also
try unlinking it, the other traversing threads do not need to eagerly
unlink the nodes. (2) Fewer successful CASes: since it can delete
multiple nodes with a single CAS, the total number of successful
deletion CASes decreases. Thanks to these characteristics, Harris’s
list outperforms Harris-Michael’s list under heavy contention.

However, optimistic traversal is inherently incompatible with the
hand-over-hand protection method of Harris-Michael list. Figure
5 illustrates an execution where a thread uses hand-over-hand
protection but ignores logical deletion, which leads to use-after-
free. (1) Suppose the traversing thread has validated the protection
of 𝑝 and is about to protect 𝑞. (2) Another thread detaches the chain
of 𝑝 and 𝑞 at once, retires them, notices that 𝑞 is not protected,
and frees 𝑞 (Figure 5a). (3) The traversing thread protects 𝑞 and
successfully validates it as 𝑝 still points to 𝑞 (ignoring the fact that
𝑝 is logically deleted), hence accessing already freed 𝑞 (Figure 5b).

There are two possible approaches to applying HP to Harris’s
list, but both of them are not satisfactory. (1) Precise validation:
Validate the protection by precisely determining the reachability of
the node to be protected. However, this is not practical because it
requires re-checking all the links in the traversed path. (2) Naive
restarting: On encountering a logically deleted node, restart the
traversal. However, this not only disables optimistic traversal but
also breaks lock-freedom,3 because the traversal will keep restarting
if a logically deleted node is not cleaned up by the thread that
logically deleted it. In fact, Harris-Michael list was derived from
Harris’s list to make it compatible with HP while maintaining
lock-freedom.

Other data structures using optimistic traversal. Optimistic
traversal has been applied to many other search data structures
to improve performance (see §5 for an experimental evaluation).
For example, Herlihy and Shavit [34] added to Harris-Michael list a
wait-free search method that simply ignores logical deletion during
traversal, and Brown et al. [9], Drachsler et al. [24], Howley and

3Roughly speaking, a data structure is lock-free if, in any circumstances, at least one
of concurrent operations—if exist—finishes successfully.

Jones [36], Natarajan and Mittal [48], Ramachandran and Mittal
[50] designed concurrent search trees based on logical deletion and
optimistic traversal. Unfortunately, all these data structures cannot
use HP for the same reason as Harris’s list: there have been no
practical methods to validate protection other than restarting when
logical deletion is detected.4

2.4 Other Reclamation Schemes and Trade-Offs
Other memory reclamation schemes support optimistic traversal,
but they exhibit other drawbacks.

Read-copy-update (RCU) [42, 43] and epoch-based reclamation
(EBR) [28, 30] are seminal reclamation schemes at the opposite of
the spectrum.5 With RCU/EBR, clients only need to announce that
they are starting and finishing an operation (dubbed critical section)
instead of announcing the protection of each pointer as in HP. An
RCU/EBR critical section protects all memory blocks that were not
retired before the beginning of the critical section, which include
all blocks that are reachable by a traversal from the entry point of
a data structure in the critical section.

RCU/EBR’s critical-section-based coarse-grained protection has
several advantages. (1) Performance: RCU/EBR makes fewer an-
nouncements (per critical section) than HP (per pointer). (2) Sim-
plicity: RCU/EBR does not require users to manually validate the
protection of each pointer. (3) Applicability: RCU/EBR never fails
protection, so it can be applied to a wide range of data structures
where validation is practically infeasible.

However, RCU/EBR is not robust against non-cooperative threads:
the number of retired and yet unreclaimed pointers is unbounded. If
a thread does not exit its critical section, no newly retired pointers
are reclaimed because the reclaimer assumes that the thread may
access such pointers. On the other hand, HP is robust, because the
number of hazard pointers is bounded.

DEBRA+ [11], NBR [56], and PEBR [39] are critical-section-based
schemes that resolve the robustness problem. They ensure robust-
ness by detecting non-cooperative threads and forcefully termi-
nating (or neutralizing or ejecting) their critical sections. To notify
neutralization to an offending thread, DEBRA+ and NBR send a
signal to the offending thread, and PEBR marks the thread as neu-
tralized so that its further pointer protection attempts (as in HP) fail.
While the neutralized thread has to stop the traversal and handle
the failure, neutralization does not prohibit optimistic traversal be-
cause it serves as the “precise validation” mechanism that notifies
the thread of the imminent danger.

But these neutralization-based schemes have the following draw-
backs. (1) DEBRA+ requires data structure-specific recovery code
that is challenging to design [56]. (2) NBR requires data structure

4Natarajan and Mittal [48] claim that HP supports their tree, but we argue that it is
not the case due to optimistic traversal as we discuss here.
5EBR is a class of lock-free algorithms that implements RCU’s interface.

4

Applying Hazard Pointers to More Concurrent Data Structures SPAA ’23, June 17–19, 2023, Orlando, FL, USA

operations to be split into read and write phases, where the former
does not write to the shared memory and the latter does not tra-
verse to more nodes. But this assumption is not widely satisfied,
e.g., by Harris-Michael list. (3) All of them do not properly support
long-running operations because they are likely to be neutralized
to ensure the progress of reclamation. For example, they are not
compatible with online analytical processing (OLAP) queries [14] in
relational database management systems that may run for several
hours and even days.

OA [17], AOA [16], FA [15], and VBR [54] are optimistic methods
that allow the threads to speculatively access possibly reclaimed
objects and verify its validity afterward. Thanks to optimism, they
have low overhead and support optimistic traversal. However, to
allow accessing reclaimed objects, they require either a custom allo-
cator that does not return memory to the OS or a custom segmenta-
tion fault handler, which may result in difficulties when integrating
into existing systems in practice.

Reference counting schemes are automatic methods that attach
a counter to each object to count the incoming references and
reclaim the object when the count becomes zero. Since objects
are not reclaimed as long as there is an incoming link, reference
counting supports optimistic traversal and does not require failure
handling. While the earlier algorithms [20, 33] were considerably
slower due to high contention on the reference counter, the recent
CDRC [3, 4] algorithm has achieved performance comparable to
semi-manual methods by deferring the updates of reference counts
using the semi-manual methods underneath. However, reference
counting methods require special treatment for reference cycles
using weak pointers.

Formalizing the trade-offs, Sheffi and Petrank [55] recently proved
that a reclamation scheme cannot achieve wide applicability, ro-
bustness, and simplicity (“ease of integration”) at the same time.
Under this constraint, we aim to improve the applicability of HP
while retaining its robustness and relative simplicity.

3 DESIGN
We prsesent HP++’s key idea (§3.1), interface (§3.2), and imple-
mentation (§3.3). Then we present an optimization to accelerate
protection while still guaranteeing robustness (§3.4).

3.1 Key Idea
As discussed in §2, HP is incompatible with optimistic traversal as
its over-approximation of unreachability induces protection failures
for logically deleted nodes. To support optimistic traversal while
retaining robustness, we propose a drastically different approach of
under-approximating unreachability and patching up the potentially
unsafe accesses arising from false-negatives.

Specifically, we make unlinkers first perform the physical dele-
tion of nodes to be deleted and then invalidate them. As such, inval-
idation is an under-approximation of unreachability. Conversely,
when a traversing thread notices that a node is invalidated, then
it abstains from taking further steps from that node. Invalidation
plays a similar role to logical deletion in Harris-Michael list in
forbidding further steps. But only the under-approximating invali-
dation allows optimistic traversal from logically deleted nodes in
Harris’s list and other efficient data structures.

But is it safe in the case of a false-negative, i.e., what if the
node is unlinked and retired but the traversing thread misses the
invalidation notification? We observe that executions leading to
use-after-free can be classified into the following two scenarios
illustrated in Figure 6. Here, the three threads T1, T2, and T3 are
traversing a Harris’s from the node ℎ to the node 𝑟 . Initially, all
threads have validated protection for ℎ, and the nodes 𝑝 and 𝑞 are
logically deleted, T1 has validated protection of 𝑝 and is about to
announce protection of 𝑞, and T2 has reached 𝑟 first, and unlinked
𝑝 and 𝑞 by making ℎ point to 𝑟 (Figure 6a).

In the first scenario, (1) T2 invalidates (✗) and frees 𝑞 (since it
is not protected yet), and is about to invalidate 𝑝 (Figure 6b); and
(2) T1 protects 𝑞 and validates the protection (Figure 6c), because
𝑝 still points to 𝑞 and 𝑝 is not invalidated yet. As a result, T1 runs
into use-after-free with 𝑞. In the second scenario, (1) T1 protects 𝑞
and validates the protection (Figure 6d), because 𝑝 still points to 𝑞
and 𝑝 is not invalidated yet; (2) T3 reaches 𝑟 and logically deletes,
unlinks, and frees 𝑟 (Figure 6e); and (3) T1 protects 𝑟 and validates
the protection (Figure 6f), because 𝑞 still points to 𝑟 and 𝑞 is not
invalidated yet. As a result, T1 runs into use-after-free with 𝑟 .

To prevent such use-after-free, we observe that the impact of
false-negative is quite limited and can be easily patched up by
letting the unlinker take some responsibility to protect the traversing
thread’s accesses. For the above example, it is sufficient for T2—the
unlinker of 𝑝 and 𝑞—to provide the following guarantees:

(1) Invalidating both 𝑝 and 𝑞 (Figure 7a) before freeing any of them
(Figure 7b). Then in the first scenario, if T1 did not see invalida-
tion of 𝑝 , 𝑞 must not have been freed by T2 at that point.

(2) Protecting 𝑟 before unlinking 𝑝 and 𝑞 (Figure 7c and 7d). Then in
the second scenario, by the time 𝑟 is retired by T3, 𝑟 must have
been already protected by T2, because T3’s physical deletion of
𝑟 happens after T2’s physical deletion of 𝑝 and 𝑞 (otherwise, T3
would have tried physically deleting 𝑝 , 𝑞 and 𝑟 at once).

We formalize this under-approximation and patch-up idea in HP++.

3.2 Interface
We first present the interface of HP++ (Algorithm 3) with Harris’s
list (Algorithm 4) as a running example. Traversing threads use
TryProtect to protect a pointer loaded from a source object. It
takes arguments (1) hp, the hazard pointer to protect with; (2) ptr,
the pointer to protect (corresponds to cur in Figure 3); (3) src and
src_link, the reference of the source object and its field from which
ptr was loaded (corresponds to prev_link in Figure 3); (4) is_invalid,
the predicate to checkwhether src is invalidated. If src is invalidated,
TryProtect returns false meaning that it is unsafe to create new
protection from src. Otherwise, it returns true, but if src_link has
changed from ptr, then the new value is written to ptr.

Unlinking threads use TryUnlink to physically delete and retire
node(s) while protecting the traversing threads. The protection
will persist until the retired nodes are invalidated by reclaimers.
TryUnlink takes arguments (1) frontier, the pointers that the un-
linker has to protect for the traversing threads; (2) do_unlink, the
function that performs unlinking and returns the unlinked nodes;
and (3) invalidate, the function that invalidates each unlinked node.
TryUnlink returns whether the unlink was successful.

5

SPAA ’23, June 17–19, 2023, Orlando, FL, USA Jaehwang Jung, Janggun Lee, Jeonghyeon Kim, and Jeehoon Kang

(a) Initial state. (b) T2 invalidates and frees 𝑞. (c) T1 protects 𝑞.

(d) T1 protects 𝑞. (e) T3 unlinks and frees 𝑟 . (f) T1 protects 𝑟 .

Figure 6: Problems arising from under-approximating unreachable pointer set.

(a) T2 invalidates 𝑝 and 𝑞. (b) T2 unlinks 𝑝 and 𝑞. (c) T2 protects 𝑟 . (d) T2 unlinks 𝑝 and 𝑞.

Figure 7: Patching up the problems of under-approximation.

Frontier. The unlinking frontier is the set of pointers that are reach-
able by following a single link from the to-be-unlinked objects but
are not themselves to-be-unlinked. In Harris’s list, the frontier is a
single pointer to the next node of the last node in the unlinked chain.
The frontier argument to TryUnlink must be decided ahead of the
actual unlinking, and the data structure must guarantee that the
frontier does not change once it is decided: otherwise, the travers-
ing thread’s access to a frontier node may not be protected. This
property holds for a wide range of concurrent data structures. For
example, it is already required for the correctness of data structures
with logical deletion such as Harris’s list and its variants.

Invalidation. Invalidation can be implemented by adding a flag to
the node. But in most cases, this can be done without extra space
overhead using tagged pointers, similar to logical deletion. For
example, Harris’s list can use the second LSB of a node’s next pointer
field to represent invalidation. It is worth noting that Invalidate
can use store instead of atomic read-modify-write thanks to the
assumption that to-be-unlinked node’s links do not change.

Case study: Harris’s list. We apply HP++ to Harris’s list’s travers-
ing function TrySearch presented in Figure 4. For space reasons,
we gloss over the code-level details (see [30]). Though anchor and
anchor_next deserve attention. They are pointers that are non-null
if and only if prev is logically deleted. In that case, anchor is the
last node that was not logically deleted, and anchor_next is its next
node, which are used for unlinking the chain of logically deleted
nodes. For instance, for the scenario illustrated in Figure 4, anchor
and anchor_next areℎ and 𝑝 , respectively, and TryUnlink at line 27
tries to update ℎ’s (anchor’s) next field from 𝑝 (anchor_next) to 𝑟
(cur, the frontier of the unlinking operation) at line 37.

The differences from the original Harris’s list without manual
memory management are highlighted. Purple indicates the dif-
ferences already present in Harris-Michael list (Figure 3): prev and
cur pointers and hp_prev and hp_cur hazard pointers advance in
hand-over-hand fashion (lines 15 and 25). On the other hand, pink
indicates the new changes for HP++. TrySearch uses TryProtect
to protect cur (line 10). If the protection fails because prev is invali-
dated, it returns None to indicate that the traversal has to restart

(line 11). anchor should be protected by a hazard pointer because the
unlinking operation accesses anchor. anchor_next should also be
protected to avoid the ABA problem, ensuring that only one thread
succeeds in unlinking the chain. anchor and anchor_next inherit
the protection from hp_prev (lines 22 and 24). Lastly, TryUnlink
does extra work of protecting the frontier [cur] and invalidating
the unlinked nodes.

3.3 Implementation
The implementation of TryProtect is self-explanatory from the
interface. Though it is worth noting that is_invalid check precedes
src_link check (lines 8 and 10); an SC fence is issued between protec-
tion and validation (line 7); and tags of src_link are ignored (line 9)
so that protection may succeed regardless of logical deletion.

TryUnlink first acquires hazard pointers for all frontier nodes
(line 14). Unlike usual protection, they do not need to be validated.
Then it performs the unlink operation (line 27). If the unlink was
unsuccessful, the protection can be immediately revoked (line 21).
Invalidation of the unlinked nodes is deferred to and batched in
DoInvalidation to maximize the benefit of under-approximation
and amortize the cost of the SC fence for ordering invalidation and
revocation of frontier protection. Specifically, the unlinked point-
ers are added to the thread-local container unlinkeds along with
the associated invalidation function and hazard pointers (line 18).
DoInvalidation is periodically called to execute the deferred in-
validation (line 26), issue an SC fence (line 29), and release the
associated hazard pointers (line 30). Then the pointers finally are
moved to retireds (line 31) and later freed by Reclaim, which is the
same as the original algorithm (Algorithm 2) except that it does not
need a fence itself thanks to the fence in DoInvalidation.

3.4 Optimization
Asymmetric fences. TryProtect in Algorithm 3 (as well as the
original HP) incurs a significant overhead due to an SC fence at
line 7. To reduce the cost, we use the well-known technique of
replacing a pair of SC fences with a pair of asymmetric fences
that provide a similar synchronization [19, 22, 23]. Specifically, we
replace the SC fences in TryProtect and DoInvalidation with

6

Applying Hazard Pointers to More Concurrent Data Structures SPAA ’23, June 17–19, 2023, Orlando, FL, USA

Algorithm 3 HP++ algorithm.
global variables:

1: hazards: ConcurrentList<HazptrRecord>
2: retireds: ConcurrentStack<void*>

thread-local variables:
3: unlinkeds: List<(List<void*>, fn(void*), List<Hazptr>)>

4: function TryProtect(
hp: &Hazptr, ptr: &(T*), src: &S, src_link: &Atomic<T*>,
is_invalid: fn(&S)→ bool,

)→ bool
5: loop
6: hp.set(ptr)

7: fence(SC)

8: if is_invalid(src) then return false

9: ptr_new← untagged(src_link.load())

10: if ptr = ptr_new then return true

11: else ptr← ptr_new

12: function TryUnlink(
frontier: List<void*>,

do_unlink: fn()→ Option<List<void*>>,
invalidate: fn(void*),

)→ bool
13: hps← []
14: for ptr ∈ frontier do
15: hp←MakeHazptr(); hps.add(hp); hp.set(ptr)
16: match do_unlink()

17: case Some(unlinked) then
18: unlinkeds.push((unlinked, invalidate, hps))

19: Call DoInvalidation and Reclaim according to configuration
20: return true

21: case None then release hps; return false

22: function DoInvalidation()
23: invalidateds← []
24: hps← []
25: for (rs, invalidate, h)← unlinkeds.pop_all() do
26: for r ∈ rs do
27: invalidate(r); invalidateds.push(r)
28: hps.append(h)

29: fence(SC)

30: release hps
31: push invalidateds to retireds

32: function Reclaim()
33: for r ∈ retireds.pop_all() do ⊲ fence is not required here
34: if r ∈ hazards then retireds.push(r)

35: else free(r)

“light” compiler fence (not appearing in binary) and “heavy” process-
wide memory fence [12, 29, 41], respectively, so that TryProtect
incurs no synchronization cost at the expense of a higher cost of
DoInvalidation.

Fewer heavy fences. Heavy fence, however, still incurs a huge
overhead even considering their infrequent invocations. Algorithm
5 illustrates an optimization to reduce heavy fence, where the dif-
ferences from Algorithm 3 are highlighted in green .

We first move the heavy fence and the following revocation of
hazard pointers at line 30 to the point in Reclaim between the
retrieval of retired pointers and the hazard scan (new functions and
variables will be discussed shortly). Since Reclaim is less frequently

Algorithm 4 Search function of Harris’s list with HP++.
thread-local variables:

1: prev, cur: Node*
2: anchor, anchor_next: Node*, Node*
3: hp_prev, hp_cur , hp_anchor, hp_anchor_next : Hazptr
4: function TrySearch(key)→ Option<bool>

5: prev← head; cur← prev.load()

6: anchor← NULL

7: loop
8: if cur = NULL then
9: found← false; break
10: if ¬TryProtect(hp_cur,cur, prev, &(*prev).next, IsInvalid) then
11: return None

12: (next, tag)← decompose_tagged_ptr((*cur).next.load())

13: if tag = 0 then
14: if (*cur).key < key then
15: prev← cur; cur← next; swap(&hp_cur, &hp_prev)

16: anchor← NULL

17: else
18: found← (*cur).key = key; break
19: else
20: if anchor = NULL then
21: anchor← prev; anchor_next← cur

22: swap(&hp_anchor, &hp_prev)

23: else if anchor_next = prev then
24: swap(&hp_anchor_next, &hp_prev)

25: prev← cur; cur← next; swap(&hp_prev, &hp_cur)

26: if anchor ≠ NULL then
27: if TryUnlink([cur], DoUnlink, Invalidate) then
28: prev← anchor

29: else return None

30: if get_tag((*cur).next.load()) = 1 then return None

31: else return Some(found)

32: function Invalidate(node: &Node)
33: node.next.store(node.next.load() | 2)

34: function IsInvalid(node: &Node)→ bool

35: return node.next.load() & 2 = 2

36: function DoUnlink()→ Option<List<Node*>>

37: if (*anchor).next.compare_exchange(anchor_next, cur) then
38: return Some([nodes from anchor_next to the node before cur])
39: else return None

invoked, the overall number of heavy fences is reduced. The modi-
fied algorithm is correct because the new fence location still plays
the two roles of the SC fence of DoInvalidation in Algorithm 3:
separating unlink at line 16 and hazard pointer scan at line 34; and
separating invalidation at line 26 and revoking hazard pointers at
line 30. In particular, line 30 in DoInvalidation of Algorithm 3 is
moved to line 14 in Reclaim of Algorithm 5.

However, this optimization has a side effect of accumulating a
significant number of hazard pointers due to deferred revocation,
which degrades the performance of the hazards scan in Reclaim.
While the hazard pointers can be revoked by after issuing an ad-
ditional heavy fence, doing so would defeat the purpose of this
optimization in the first place—reducing heavy fences.

To revoke hazard pointers without additional fences, we let each
thread piggyback on another thread’s heavy fence by assigning a

7

SPAA ’23, June 17–19, 2023, Orlando, FL, USA Jaehwang Jung, Janggun Lee, Jeonghyeon Kim, and Jeehoon Kang

Algorithm 5 HP++ algorithm with epoched heavy fence.
additional global variables:

1: fence_epoch: Atomic<Epoch>

additional thread-local variables:

2: epoched_hps: List<(Epoch, Hazptr)>

3: function DoInvalidation()
4: prepare local_invalidateds and hps as in Algorithm 3
5: epoch← ReadEpoch()
6: for (old_epoch, hp)← epoched_hps.pop_all() do
7: if old_epoch + 2 ≤ epoch then release hp
8: else add back to epoched_hps

9: add hps to epoched_hps after attaching epoch
10: push local_invalidateds to invalidateds

11: function Reclaim()
12: rs← retireds.pop_all()

13: FenceEpoch()
14: release epoched_hps
15: for r ∈ rs do
16: ...
17: function FenceEpoch()
18: epoch← fence_epoch.load()

19: heavy fence
20: fence_epoch.compare_exchange(epoch, epoch+1)

21: function ReadEpoch()
22: epoch← fence_epoch.load()

23: loop
24: light fence
25: new_epoch← fence_epoch.load()

26: if epoch = new_epoch then return epoch

27: epoch← new_epoch

global epoch number to each period delimited heavy fences. Specifi-
cally, each thread maintains the list epoched_hps of hazard pointers
attached with an epoch. DoInvalidation gets the current epoch
𝑒 with ReadEpoch (line 5), adds hazard pointers to epoched_hps

after attaching 𝑒 (line 9), and cleans up the old hazard pointers with
epoch ≤ 𝑒 − 2 (line 7). The old hazard pointers are safe to clean up
because there is always a heavy fence between two ReadEpoch
invocations returning 𝑒 − 2 and 𝑒 . To enforce this, FenceEpoch
wraps a heavy fence with a read from the global epoch counter
fence_epoch and its increment with a CAS; and ReadEpoch wraps
a light fence with reads from fence_epoch and ensures they read
the same epoch.

4 ANALYSIS
We analyze various properties of HP++ such as safety (§4.1), appli-
cability (§4.2), lock-freedom (§4.3), and robustness (§4.4).

4.1 Safety
Our algorithm is safe: it does not incur use-after-free. As the first
step towards the proof, we formalize new assumptions made in §3.

Assumption 1 (Immutability of Unlinked Nodes). Before in-
voking TryUnlink for a node, its next pointers never change.

In other words, mutating nodes are not unlinked. To the best of
our knowledge, this assumption is satisfied by all concurrent data

structures we are aware of (see §4.2 for more discussions). Based
on the assumption, we prove the safety of Algorithm 3 and 5.

Theorem 4.1 (Safety). Suppose a concurrent data structure, 𝑆 ,
reclaims nodes using Algorithm 3 or Algorithm 5 and satisfies As-
sumption 1. Then 𝑆 does not incur use-after-free.

The proof essentially formalizes the key idea presented in §3.1.
For space reasons, we present the full proof in Appendix A [37].

4.2 Applicability
We argue that HP++ is widely applicable, and notably, strictly more
applicable than the original HP. We discuss the additional require-
ments for applying HP++ to a data structure, i.e., Assumption 1 and
the ability to recover from protection failure, which are met by a
wide range of data structures (see Appendix B [37] for more detail).
We will compare the applicability of HP++ and other schemes in
§6.

On Assumption 1. For lock-based data structures, unlinking of a
node is usually preceded by acquiring the lock for that node (e.g.,
to load its next node), preventing modification from other threads.
For lock-free data structures, if the deletion of a node happens
at the entry point of the data structure, each node’s links become
immutable before deletion. For example, in Treiber’s stack [57], each
node is immutable (once added to the stack); and in Michael-Scott
queue [47], only the tail node can be mutated (only once) while
the tail node cannot be unlinked. The most common approach to
supporting deletion at arbitrary position is two-phase, logical and
physical deletion (e.g., Harris’s list [30] and its variant), where the
correctness of the data structure already depends on the property
that the links of a logically deleted node are immutable.

On recovery from protection failure. HP++ clients should recover
from the failure of TryProtect as they are not allowed to traverse
further. We refer the reader to Sheffi et al. [54, §4.2] for a general
account of failure handling strategy, and we here discuss two simple
strategies that cover most scenarios.

For many lock-free linearizable [35, 52] data structures, recovery
is straightforward. Due to the non-blocking nature, any instruc-
tions before and after the linearization point should maintain the
data structure’s invariant without changing its abstract state (e.g.,
reads and helping writes). As such, if protection fails before the
linearization point, it is safe to simply restart the operation from
the beginning; if protection fails after the linearization point, it is
safe to ignore the remaining instructions and return immediately.

For lock-based data structures, recovery is difficult in general
because if the thread was in a lock critical section, naive restart on
protection failuremay break the data structure’s invariant. However,
recovery is trivial for access-aware [55, 56] data structures. Roughly
speaking, a data structure is access-aware if (1) each operation can
be divided into alternating read phase and write phase; (2) in the
write phase, the thread can write to only a set of pointers reserved
(protected in the context of HP++) at the end of the read phase;
and (3) when transitioning from a write phase to a read phase,
the thread has to restart the operation from the entry point. By
the definition, protection failure does not happen during a write
phase. As such, to apply HP++, it suffices to restart the operation
on encountering protection failure in a read phase.

8

Applying Hazard Pointers to More Concurrent Data Structures SPAA ’23, June 17–19, 2023, Orlando, FL, USA

Relation to the original hazard pointers. It is worth noting that
Algorithm 3 is an extension—not modification—of the original HP
(hence the name HP++). The two algorithms share the same high-
level architecture (Algorithm 1) but differ in how to implement
retirement notification. Such a shared architecture brings about
the following benefits. (1) Hybrid: we can use both retirement
notification strategies—the original and ours—in tandem to protect
different nodes of a single data structure. If you wish to avoid
Algorithm 3’s overhead of node invalidation (which is small, though;
see §5), you can use the original algorithm’s over-approximation
strategy. (2) Backward compatibility: Algorithm 3 can seamlessly
replace the original HP in the existing implementation of concurrent
data structures with reclamation.

Furthermore, it is straightforward to switch the retirement noti-
fication strategy from the original to ours. Specifically, Algorithm
3 does not incur additional restarts than the original. To see why, it
suffices to show that Algorithm 3 successfully protects a pointer as
far as the original algorithm does, or in other words, the protection
validation condition of the original HP (reachability) implies that
of Algorithm 3 (node validation).

Suppose the original algorithm traverses from a node, say 𝑝 , to
another node, say 𝑞, and successfully protects 𝑞. Since the only
thing we know about 𝑞 is that 𝑝 points to 𝑞, the reachability of 𝑞
should be derived from the following conditions: (1) 𝑝 is reachable
from the entry point of the data structure; and (2) 𝑝 still points to
𝑞. Since 𝑝 is reachable, 𝑝 should not have been invalidated so that
Algorithm 3 would pass 𝑝’s validity check at line 8. Since 𝑝 still
points to 𝑞, it would pass the 𝑝-to-𝑞 link check at line 10. As such,
Algorithm 3 would successfully protect the same pointer 𝑞.

4.3 Lock-Freedom
In general, the original HP does not preserve lock-freedom: when
it is applied to a lock-free data structure, the result is not neces-
sarily lock-free. For instance, applying HP with the naive restart
approach breaks the lock-freedom of Harris’s list (§2.3). To pre-
serve lock-freedom, the data structure should employ some helping
mechanism, which may require non-trivial modification [7].

In contrast, our schemes preserve lock-freedom because they
under-approximate unreachability and allow optimistic traversal.

Theorem 4.2 (Lock-freedom preservation). If a lock-free data
structure reclaims nodes using Algorithm 3 and 5 and satisfies As-
sumption 1, then the resulting data structure is also lock-free.

Proof. We prove by contradiction that our algorithm’s protec-
tion failures do not jeopardize the lock-freedom of data structures.
Suppose otherwise and there exists an (infinite) execution history of
the resulting data structure with reclamation where no operations
are finished successfully after some timestamp, say 𝑡0.

For each protection failure, consider the unlinker thread, say𝑈 ,
that invalidated the node and the accessor thread, say 𝐴, that tried
traversing from that node. Then 𝑈 cannot induce 𝐴’s protection
failure again because (1) 𝐴 has already observed the node’s unlink-
ing and it will not traverse from it again; and (2)𝑈 ’s operation that
unlinked the node is running forever by the assumption so that it
will not invalidate another node. As such, there are at most 𝑁 × 𝑁
protection failures after 𝑡0, where 𝑁 is the number of threads.

Let 𝑡1 be a timestamp after all protection failures after 𝑡0. Then
there will be no protection failures after 𝑡1. Then by the lock-
freedom of the original data structure, at least one operation should
finish successfully after 𝑡1, inducing a contradiction. □

But our algorithm does not preserve wait-freedom6, e.g., it makes
Heller et al. [32], Herlihy and Shavit [34]’s wait-free search method
just lock-free as traversal may be restarted indefinitely due to pro-
tection failures. We believe this is a fundamental limitation of any
robust and widely applicable reclamation schemes, based on the
recent result on the trade-offs of reclamation schemes [55].

4.4 Robustness
Like the original HP, our algorithm is robust: the number of garbages
that are unlinked but not reclaimed yet, is bounded. In Algorithm
3, the number of the additional hazard pointers for unlinked nodes’
next pointers, announced at line 14 in TryUnlink, are bounded by
the maximum number of next pointer for each thread. In Algorithm
5, we can still bound the number by simply invoking Reclaim that
invalidates such hazard pointers at line 14.

5 EXPERIMENTAL EVALUATION
We implemented HP++ as a Rust library7 and evaluated it on a suite
of synthetic benchmarks8.

Other than HP++, our benchmark suite includes the following
reclamation schemes:HP: the original hazard pointers [45, 46] with
asymmetric fence optimization (§3.4); EBR: epoch-based RCU [28,
30]; PEBR: pointer- and epoch-based reclamation [39]; RC: the
EBR flavor of CDRC [4]; and NR: the baseline that does not re-
claim memory.9 The implementation of HP++ triggers Reclaim
per 128 TryUnlinks (for other schemes, per 128 Retires), and
DoInvalidation per 32 TryUnlinks.10 We implemented HP and
RC on our own, and used the public implementation of PEBR and
crossbeam-epoch crate [21] for EBR.

Our benchmark suite consists of the following representative
data structures: HMList: Harris-Michael linked list [44], HHSList:
Harris’s list [30] with wait-free get() method [34] (HP not appli-
cable)11, HashMap: chaining hash table using HMList (for HP)
or HHSList (for others) for each bucket [44], SkipList: lock-free
skiplist by Herlihy and Shavit [34], with wait-free get() for schemes
other than HP; Bonsai: a non-blocking variant of Bonsai tree [13]’s
tree, EFRBTree: Ellen et al. [26]’s tree12, and NMTree: Natarajan-
Mittal tree [48] (HP not applicable).

The benchmark suite was compiled with Rust nightly-2022-12-28
with default optimization enabled. We used jemalloc [27] to reduce
contention on the memory allocator. We conducted experiments on
a dedicated machine with single-socket AMD EPYC 7543 (2.8GHz,
6Roughly speaking, a data structure is wait-free if, in any circumstances, every opera-
tion finishes successfully.
7Publicly available at https://github.com/kaist-cp/hp-plus
8Publicly available at https://github.com/kaist-cp/smr-benchmark
9We do not include evaluation for NBR and VBR, but we expect that they generally
outperform EBR as reported by Singh et al. [56] and Sheffi et al. [54].
10We found these numbers big enough to amortize the cost of the expensive synchro-
nizations and small enough to bound the number of unreclaimed objects.
11For PEBR and HP++, get() is only lock-free due to protection failure (§4.3). The same
applies to SkipList.
12We omitted the implementation for EFRBTree with RC as it requires nontrivial design
efforts: cycles involving operation descriptor should be broken with weak pointers.

9

https://github.com/kaist-cp/hp-plus
https://github.com/kaist-cp/smr-benchmark

SPAA ’23, June 17–19, 2023, Orlando, FL, USA Jaehwang Jung, Janggun Lee, Jeonghyeon Kim, and Jeehoon Kang

1 8 16 24 32 40 48 56 64 72 80
Threads

0

0.5

1

1.5

2

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HMList

1 8 16 24 32 40 48 56 64 72 80
Threads

0

0.5

1

1.5

2

HHSList

1 8 16 24 32 40 48 56 64 72 80
Threads

0

50

100

150

HashMap

1 8 16 24 32 40 48 56 64 72 80
Threads

0

20

40

60

EFRBTree

1 8 16 24 32 40 48 56 64 72 80
Threads

0

20

40

60

Th
ro

ug
hp

ut
 (M

 o
p/

s)

NMTree

1 8 16 24 32 40 48 56 64 72 80
Threads

0

0.25

0.50

0.75

Bonsai

1 8 16 24 32 40 48 56 64 72 80
Threads

0

20

40

60
SkipList

Figure 8: Throughput of read-write workloads for varying number of threads.

0 10 20 30 40 50 60 70 80
Threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Th
ro

ug
hp

ut
 (M

 o
p/

s)

Key Range 16

0 10 20 30 40 50 60 70 80
Threads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Th
ro

ug
hp

ut
 (M

 o
p/

s)

Key Range 10000

(a) HMList with HP vs. HHSList with HP++.

0 10 20 30 40 50 60 70 80
Threads

0

10

20

30

40

50

Th
ro

ug
hp

ut
 (M

 o
p/

s)

Key Range 128

0 10 20 30 40 50 60 70 80
Threads

0

10

20

30

40

Th
ro

ug
hp

ut
 (M

 o
p/

s)

Key Range 100000

(b) EFRBTree with HP vs. NMTree with HP++.

Figure 9: Throughput of read-write workloads for each category of data structures, varying key ranges and number of threads.

2^18 2^19 2^20 2^21 2^22 2^23 2^24 2^25 2^26
Key range

0

0.2

0.4

0.6

0.8

1

1.2

Th
ro

ug
hp

ut
 ra

tio
 to

 N
R

Figure 10: Throughput of long-running read operations.

32 cores, 64 threads) and eight 32GiB DDR4 DRAMs (256GiB in
total). The machine runs Ubuntu 22.04 and Linux 5.15 with the
default configuration.

Methodology. We measured throughput (operations per second)
and the peak number of retired yet unreclaimed objects for (1) vary-
ing number of threads: 1, 8, 16, 24, · · · , 80; (2) three types of work-
loads: write-only (50% inserts and 50% deletes), read-write (50%
reads and 50% writes), and read-most (90% reads and 10% writes);
(3) varying key ranges: small (16 for lists, 128 for the others) and big

(10K for lists, 100K for the others); and (4) fixed time: 10 seconds
(Figure 8, 9 and 11). The data structures are pre-filled to 50%. For
each scenario, we report the average for 10 runs unless specified
otherwise. The three types of workloads exhibit similar results, so
we report the result for read-write workloads for space reasons. For
the full experimental evaluation result, see Appendix C [37].

In addition, we evaluate the performance of long-running op-
erations under heavy reclamation by measuring the throughput
of read operations of lists (HMList for HP and HHSList for others)
with big key ranges: 218, 219, · · · , 226 (Figure 10). Specifically, 32
threads perform get() for random elements, and the other 32 threads
push and pop to the head of the list.

Throughput. We observe that HP++’s advantage of compatibility
with optimistic traversal outweighs the overhead added to HP from
invalidation and frontier protection.

First, we observe that HP++’s overhead of per-node invalida-
tion and additional protection of pointers over HP is moderately
small. Figure 8 presents the throughput under the big key range. The
thread oversubscription ranges are highlighted grey . For lists (HM-
List, HHSList), HP++’s throughput is similar to HP and is around
87-93% of EBR. For high-throughput data structures (HashMap,
EFRBTree, NMTree, SkipList), HP++’s throughput is about 80-90%
of HP and 55-90% of EBR. Bonsai exhibits different performance

10

Applying Hazard Pointers to More Concurrent Data Structures SPAA ’23, June 17–19, 2023, Orlando, FL, USA

1 8 16 24 32 40 48 56 64 72 80
Threads

0

5000

10000

15000

20000

Pe
ak

 u
nr

ec
la

im
ed

 m
em

or
y

bl
oc

ks

HMList

1 8 16 24 32 40 48 56 64 72 80
Threads

0

5000

10000

15000

20000
HHSList

1 8 16 24 32 40 48 56 64 72 80
Threads

0

20000

40000

60000

HashMap

1 8 16 24 32 40 48 56 64 72 80
Threads

0

25000

50000

75000

EFRBTree

1 8 16 24 32 40 48 56 64 72 80
Threads

0

30000

60000

90000

Pe
ak

 u
nr

ec
la

im
ed

 m
em

or
y

bl
oc

ks

NMTree

1 8 16 24 32 40 48 56 64 72 80
Threads

0

50000

100000

150000

Bonsai

1 8 16 24 32 40 48 56 64 72 80
Threads

0

10000

20000

30000

40000

SkipList

Figure 11: Peak number of unreclaimed blocks of read-write workloads for varying numbers of threads.

characteristics. Notably, RC is much slower because tree rebalanc-
ing involves large amounts of link updates which modify reference
counters, and HP is less efficient because it has to validate pro-
tections wrt. the root pointer, which would fail if there were any
changes to the tree. On the other hand, HP++ does not incur any
overhead since Bonsai does not require frontier protection.

Second, we observe that the performance benefit of optimizations
enabled by HP++’s compatibility with optimistic traversal is large.
Figure 9 compares the maximum throughput that can be achieved
in each category of data structure (list and tree) with the original HP
(only applicable to HMList and EFRBTree) and HP++ (applicable to
HHSList and NMTree as well) under varying degrees of contention.
Under heavy contention (small key range) or for trees, HP++ beats
HP by a large margin.

Long-running operations. We observe that HP++ is suitable for
long-running operations. Figure 10 compares the throughput of
long-running read operations with varying the key range. PEBR’s
relative throughput plunges with the key ranges > 221, because its
coarse-grained neutralization hinders long-running operations. On
the other hand, HP++ does not suffer from such a problem since its
protection failure is fine-grained (more precise): TryProtect fails
only when the source object is invalidated.

Memory footprint. We observe that HP++ maintains the robust-
ness of the original HP despite unlink frontier protection.

Figure 11 presents the peak number of retired but unreclaimed
memory blocks.13 In low-throughput cases, HP++ leaves more unre-
claimed memory than other schemes due to frontier protection and
deferred retirement. However, under high contention or thread over-
subscription, HP++ prevents the number of unreclaimed memory
blocks from growing rapidly. While HP++’s number of unreclaimed
blocks is larger than HP’s in such cases, it still maintains the overall
trend of HP’s, and is smaller than PEBR’s in most cases because
PEBR’s neutralization is coarse-grained.
13We do not report the result for RC, because this metric is not well-defined for
reference counting schemes. Appendix C [37] reports the real memory usage, where
RC has a similar trend to its underlying scheme, EBR in our benchmark.

6 RELATEDWORK
HP [45, 46] and RCU/EBR [28, 30, 42, 43] are classic reclamation
schemes with opposing characteristics: HP is robust but slow and
not widely applicable, whereas RCU/EBR is fast and widely applica-
ble but not robust (§2.4). To mitigate the problems of either scheme,
many newmethods have been proposed. For example, to reduce the
performance overhead of HP, Dice et al. [22] proposed the usage of
asymmetric fences [29] (§3.4), and IBR [58], Hazard Eras [51], and
Hyaline [49] introduced validation by epoch.

From now on, we focus on comparing HP++ with other robust
and widely applicable manual schemes. Table 1 presents a qualita-
tive comparison of HP++ and the other state-of-the-art schemes
with such characteristics, and Table 2 summarizes the applicability
of reclamation schemes to various concurrent data structures.14

PEBR [39] and NBR [56] are hybrid schemes that utilize both
the RCU/EBR’s critical-section-based and HP’s per-pointer protec-
tion. To resolve the robustness problem of RCU/EBR, they employ
the mechanism called neutralization (or ejection) that forcefully
terminates long critical sections that block the progress of recla-
mation. The neutralized thread should stop the operation and run
a recovery procedure since it is no longer safe to resume. To help
recovery, they use hazard pointers to protect the objects relevant
for recovery. With these schemes, threads can optimistically tra-
verse data structures since they know that they will be notified
by neutralization when further traversal is dangerous. However,
their coarse-grained neutralization may severely degrade the per-
formance of long-running operations (Figure 10).

PEBR and NBR differ in their neutralization and notification
mechanism. In PEBR, the neutralization simply marks the offending
thread as neutralized, and the traversing thread should explicitly
announce the protection of the next node and then validate that it
is not neutralized. Upon detecting neutralization, the thread should
run a data structure-specific recovery procedure using the objects
protected so far, similarly to HP++.

14Table 2 is adapted from the analysis by Singh et al. [56] with some minor fixes. See
Appendix B [37] for more detail.

11

SPAA ’23, June 17–19, 2023, Orlando, FL, USA Jaehwang Jung, Janggun Lee, Jeonghyeon Kim, and Jeehoon Kang

criterion PEBR NBR VBR HP++

system requirement heavy fence
(optional)

signal,
non-local jump

custom allocator,
wide CAS

heavy fence
(optional)

failure condition neutralization neutralization outdated object/field invalidated object

failure handling custom handling only applicable to
access-aware DS custom handling custom handling

overhead protection, validation,
critical section

protection on
phase change,
critical section

validation
protection, validation,
frontier protection,

invalidation

unreclaimed objects 𝑂(hazards +
neutralization threshold)

𝑂(hazards +
neutralization threshold) 𝑂(threads) 𝑂(hazards + frontiers

+ reclamation threshold)
Table 1: Comparison of HP++ with recent reclamation schemes that are robust and widely applicable.

Data structure HP DEBRA+ NBR RCU/
EBR

HP++,
PEBR,
VBR

linked list [32] ✗ ✗ ▲ ✓ ▲

linked list [30] ✗ * ✓ ✓ ✓

linked list [44] ✓ * ✗ ✓ ✓

partially ext. BST [24] ✗ ✗ ** ✓ ✓

ext. BST [26] ✓ * ✓ ✓ ✓

ext. BST [48] ✗ * ✓ ✓ ✓

ext. BST [25] ✓ * ✗ ✓ ✓

ext. BST [18] ✗ ✗ ▲ ✓ ▲

int. BST [36] ✗ * ✓ ✓ ✓

int. BST [50] ✗ ✗ ✗ ✓ ✓

partially ext. AVL [6] ✓ ✗ ✗ ✓ ✓

partially ext. AVL [24] ✗ ✗ ✗ ✓ ✓

ext. relaxed AVL [31] ✗ ✓ ✓ ✓ ✓

ext. AVL [8] ✗ ✓ ✓ ✓ ✓

patricia trie [53] ✗ * ▲ ✓ ▲

ext. chromatic tree [9] ✗ ✓ ✓ ✓ ✓

ext. (a,b)-tree [8] ✗ ✓ ✓ ✓ ✓

ext. interpol. tree [10] ✗ ✗ ✗ ✓ ▲

Table 2: Applicability of reclamation schemes. ✓: supported.
✗: not supported. ▲: supported but wait-freedom not preserved
(§4.3) *: requiring significant design effort for data structure-specific
recovery. **: requiring code restructuring to satisfy the scheme’s
assumption.

On the other hand, NBR uses POSIX signal for neutralization
and non-local jump in the signal handler for failure handling (§2.4).
This technique was first introduced in DEBRA+ [11]. The problem
with DEBRA+ is that it requires recovery code that is challenging
to design. One of the reasons is that the code between a non-local
jump’s anchor (sigsetjmp) and jumper (siglongjmp) should follow
general rules to prevent the undefined behaviors, e.g., it should not
modify any global variables, (de)allocate heap memory, or invoke
system calls. DEBRA+ proposes a recovery strategy based on op-
erator descriptor and helping. The strategy applies to some data
structures [8, 9, 31], but recovery for the other data structures has
not been explicitly discussed.

NBR can be understood as a principled methodology to improve
the applicability of DEBRA+. To simplify the recovery strategy, NBR
requires data structure operations to be split into read and write

phases, where the former does not write to the shared memory and
the latter does not traverse to more nodes. But this assumption, or
more specifically, the condition (3) of access-aware data structures
(§4.2), is not satisfied by several data structures because (1) they
restart from an intermediate node after helping [25, 44] or after
failing to update the terminal node [10]; or (2) they read and write
to the shared memory in an interleaved manner during an internal
cleanup [6, 24] or during delete operation [50]. However, NBR is
likely to outperform HP++ and PEBR, because it does not require
explicit protection and validation during the read phase thanks to
the immediacy and asynchrony of signals.

VBR [54] is an optimistic method that allows accessing possibly
reclaimed objects and then verifying that the access was valid. Un-
like the earlier optimistic schemes OA [17], AOA [16] and FA [15]
which only allow optimistic reads and use hazard pointers to pes-
simistically protect write accesses, VBR is fully optimistic. To allow
optimistic writes, VBR attaches the version number to each mutable
field of objects and updates the field and its version atomically using
wide CAS. When an object or its field is outdated, the operation
fails and the client should handle it manually. Thanks to maximal
optimism, VBR incurs only a small validation overhead and is likely
to outperform HP++ and PEBR. However, optimistic methods re-
quire a custom user-level allocator that does not return memory to
the OS (or a custom segmentation fault handler) to allow accessing
reclaimed objects. VBR additionally requires that the allocator pre-
serve the type of memory blocks even when reallocated to avoid
the ABA problem in updates.

ACKNOWLEDGMENTS
We thank the SPAA 2023 reviewers for their concrete, in-depth, and
valuable feedback. This work was supported by Samsung Research
Funding & Incubation Center of Samsung Electronics under Project
Number SRFC-IT2201-06.

REFERENCES
[1] Dan Alistarh, William Leiserson, Alexander Matveev, and Nir Shavit. 2017.

Forkscan: Conservative Memory Reclamation for Modern Operating Systems. In
Proceedings of the Twelfth European Conference on Computer Systems (Belgrade,
Serbia) (EuroSys ’17). Association for Computing Machinery, New York, NY, USA,
483–498. https://doi.org/10.1145/3064176.3064214

[2] Dan Alistarh, William Leiserson, Alexander Matveev, and Nir Shavit. 2018.
ThreadScan: Automatic and Scalable Memory Reclamation. ACM Trans. Parallel
Comput. 4, 4, Article 18 (may 2018), 18 pages. https://doi.org/10.1145/3201897

12

https://doi.org/10.1145/3064176.3064214
https://doi.org/10.1145/3201897

Applying Hazard Pointers to More Concurrent Data Structures SPAA ’23, June 17–19, 2023, Orlando, FL, USA

[3] Daniel Anderson, Guy E. Blelloch, and Yuanhao Wei. 2021. Concurrent Deferred
Reference Counting with Constant-Time Overhead. In Proceedings of the 42nd
ACM SIGPLAN International Conference on Programming Language Design and
Implementation (Virtual, Canada) (PLDI 2021). Association for Computing Ma-
chinery, New York, NY, USA, 526–541. https://doi.org/10.1145/3453483.3454060

[4] Daniel Anderson, Guy E. Blelloch, and Yuanhao Wei. 2022. Turning Man-
ual Concurrent Memory Reclamation into Automatic Reference Counting. In
Proceedings of the 43rd ACM SIGPLAN International Conference on Program-
ming Language Design and Implementation (San Diego, CA, USA) (PLDI 2022).
Association for Computing Machinery, New York, NY, USA, 61–75. https:
//doi.org/10.1145/3519939.3523730

[5] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011.
Mathematizing C++ Concurrency. In Proceedings of the 38th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Austin,
Texas, USA) (POPL ’11). Association for Computing Machinery, New York, NY,
USA, 55–66. https://doi.org/10.1145/1926385.1926394

[6] Nathan G. Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun. 2010. A
Practical Concurrent Binary Search Tree. In Proceedings of the 15th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (Bangalore, India)
(PPoPP ’10). Association for Computing Machinery, New York, NY, USA, 257–268.
https://doi.org/10.1145/1693453.1693488

[7] Trevor Brown. 2017. Reclaiming memory for lock-free data structures: there
has to be a better way. CoRR abs/1712.01044 (2017). arXiv:1712.01044 http:
//arxiv.org/abs/1712.01044

[8] Trevor Brown. 2017. Techniques for Constructing Efficient Lock-free Data Struc-
tures. https://doi.org/10.48550/ARXIV.1712.05406

[9] Trevor Brown, Faith Ellen, and Eric Ruppert. 2014. A General Technique for
Non-Blocking Trees. SIGPLAN Not. 49, 8 (feb 2014), 329–342. https://doi.org/10.
1145/2692916.2555267

[10] Trevor Brown, Aleksandar Prokopec, and Dan Alistarh. 2020. Non-Blocking Inter-
polation Search Trees with Doubly-Logarithmic Running Time. In Proceedings of
the 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming (San Diego, California) (PPoPP ’20). Association for Computing Machinery,
New York, NY, USA, 276–291. https://doi.org/10.1145/3332466.3374542

[11] Trevor Alexander Brown. 2015. Reclaiming Memory for Lock-Free Data Struc-
tures: There Has to Be a Better Way. In Proceedings of the 2015 ACM Sympo-
sium on Principles of Distributed Computing (Donostia-San Sebastián, Spain)
(PODC ’15). Association for Computing Machinery, New York, NY, USA, 261–270.
https://doi.org/10.1145/2767386.2767436

[12] Windows Dev Center. 2023. FlushProcessWriteBuffers function.
https://docs.microsoft.com/en-us/windows/desktop/api/processthreadsapi/nf-
processthreadsapi-flushprocesswritebuffers

[13] Austin T. Clements, M. Frans Kaashoek, and Nickolai Zeldovich. 2012. Scalable
Address Spaces Using RCU Balanced Trees. In Proceedings of the Seventeenth
International Conference on Architectural Support for Programming Languages
and Operating Systems (London, England, UK) (ASPLOS XVII). Association for
Computing Machinery, New York, NY, USA, 199–210. https://doi.org/10.1145/
2150976.2150998

[14] E.F. Codd, S.B. Codd, and C.T. Salley. 1993. Providing OLAP (On-line Analytical
Processing) to User-analysts: An IT Mandate. Codd & Associates.

[15] Nachshon Cohen. 2018. Every Data Structure Deserves Lock-Free Memory
Reclamation. Proc. ACM Program. Lang. 2, OOPSLA, Article 143 (oct 2018),
24 pages. https://doi.org/10.1145/3276513

[16] Nachshon Cohen and Erez Petrank. 2015. Automatic Memory Reclamation for
Lock-Free Data Structures. In Proceedings of the 2015 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications
(Pittsburgh, PA, USA) (OOPSLA 2015). Association for Computing Machinery,
New York, NY, USA, 260–279. https://doi.org/10.1145/2814270.2814298

[17] Nachshon Cohen and Erez Petrank. 2015. Efficient Memory Management for
Lock-Free Data Structures with Optimistic Access. In Proceedings of the 27th ACM
Symposium on Parallelism in Algorithms and Architectures (Portland, Oregon,
USA) (SPAA ’15). Association for Computing Machinery, New York, NY, USA,
254–263. https://doi.org/10.1145/2755573.2755579

[18] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. 2015. Asynchro-
nized Concurrency: The Secret to Scaling Concurrent Search Data Structures.
In Proceedings of the Twentieth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (Istanbul, Turkey) (ASP-
LOS ’15). Association for Computing Machinery, New York, NY, USA, 631–644.
https://doi.org/10.1145/2694344.2694359

[19] M. Desnoyers, P. E. McKenney, A. S. Stern, M. R. Dagenais, and J. Walpole. 2012.
User-Level Implementations of Read-Copy Update. IEEE Transactions on Parallel
and Distributed Systems 23, 2 (2012), 375–382. https://doi.org/10.1109/TPDS.2011.
159

[20] David L. Detlefs, Paul A. Martin, Mark Moir, and Guy L. Steele Jr. 2002. Lock-
free reference counting. Distributed Computing 15, 4 (01 Dec 2002), 255–271.
https://doi.org/10.1007/s00446-002-0079-z

[21] Crossbeam Developers. 2023. Crossbeam. https://github.com/crossbeam-rs/
crossbeam

[22] Dave Dice, Maurice Herlihy, and Alex Kogan. 2016. Fast Non-Intrusive Memory
Reclamation for Highly-Concurrent Data Structures. In Proceedings of the 2016
ACM SIGPLAN International Symposium on Memory Management (Santa Barbara,
CA, USA) (ISMM 2016). Association for Computing Machinery, New York, NY,
USA, 36–45. https://doi.org/10.1145/2926697.2926699

[23] Dave Dice, Hui Huang, and Mingyao Yang. 2001. Asymmetric Dekker Synchro-
nization. http://web.archive.org/web/20080220051535/http://blogs.sun.com/
dave/resource/Asymmetric-Dekker-Synchronization.txt

[24] Dana Drachsler, Martin Vechev, and Eran Yahav. 2014. Practical Concurrent
Binary Search Trees via Logical Ordering. SIGPLAN Not. 49, 8 (feb 2014), 343–356.
https://doi.org/10.1145/2692916.2555269

[25] Faith Ellen, Panagiota Fatourou, Joanna Helga, and Eric Ruppert. 2014. The
Amortized Complexity of Non-Blocking Binary Search Trees. In Proceedings of
the 2014 ACM Symposium on Principles of Distributed Computing (Paris, France)
(PODC ’14). Association for Computing Machinery, New York, NY, USA, 332–340.
https://doi.org/10.1145/2611462.2611486

[26] Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel. 2010.
Non-Blocking Binary Search Trees. In Proceedings of the 29th ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing (Zurich, Switzerland)
(PODC ’10). Association for Computing Machinery, New York, NY, USA, 131–140.
https://doi.org/10.1145/1835698.1835736

[27] Jason Evans. 2006. A scalable concurrent malloc (3) implementation for FreeBSD.
[28] Keir Fraser. 2004. Practical lock-freedom. Ph. D. Dissertation.
[29] David Goldblatt. 2022. P1202R5: Asymmetric Fences. https://wg21.link/p1202r5.
[30] Timothy L. Harris. 2001. A Pragmatic Implementation of Non-Blocking Linked-

Lists. In Proceedings of the 15th International Conference on Distributed Computing
(DISC ’01). Springer-Verlag, Berlin, Heidelberg, 300–314.

[31] Meng He and Mengdu Li. 2017. Deletion without Rebalancing in Non-Blocking
Binary Search Trees. In 20th International Conference on Principles of Distributed
Systems (OPODIS 2016) (Leibniz International Proceedings in Informatics (LIPIcs),
Vol. 70), Panagiota Fatourou, Ernesto Jiménez, and Fernando Pedone (Eds.).
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 34:1–
34:17. https://doi.org/10.4230/LIPIcs.OPODIS.2016.34

[32] Steve Heller, Maurice Herlihy, Victor Luchangco, Mark Moir, William N. Scherer,
and Nir Shavit. 2006. A Lazy Concurrent List-Based Set Algorithm. In Princi-
ples of Distributed Systems, James H. Anderson, Giuseppe Prencipe, and Roger
Wattenhofer (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 3–16.

[33] Maurice Herlihy, Victor Luchangco, Paul Martin, and Mark Moir. 2005. Nonblock-
ing Memory Management Support for Dynamic-Sized Data Structures. ACM
Trans. Comput. Syst. 23, 2 (may 2005), 146–196. https://doi.org/10.1145/1062247.
1062249

[34] Maurice Herlihy and Nir Shavit. 2012. The Art of Multiprocessor Programming,
Revised Reprint (1st ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA.

[35] Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: A Correctness
Condition for Concurrent Objects. ACM Trans. Program. Lang. Syst. 12, 3 (July
1990), 463–492. https://doi.org/10.1145/78969.78972

[36] Shane V. Howley and Jeremy Jones. 2012. A Non-Blocking Internal Binary
Search Tree. In Proceedings of the Twenty-Fourth Annual ACM Symposium on
Parallelism in Algorithms andArchitectures (Pittsburgh, Pennsylvania, USA) (SPAA
’12). Association for Computing Machinery, New York, NY, USA, 161–171. https:
//doi.org/10.1145/2312005.2312036

[37] Jaehwang Jung, Janggun Lee, Jeonghyeon Kim, and Jeehoon Kang. 2023. Applying
Hazard Pointers to More Concurrent Data Structures. https://cp.kaist.ac.kr/gc

[38] Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer.
2017. A Promising Semantics for Relaxed-Memory Concurrency. SIGPLAN Not.
52, 1 (jan 2017), 175–189. https://doi.org/10.1145/3093333.3009850

[39] Jeehoon Kang and Jaehwang Jung. 2020. A Marriage of Pointer- and Epoch-Based
Reclamation. In Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation (London, UK) (PLDI 2020). Association for
Computing Machinery, New York, NY, USA, 314–328. https://doi.org/10.1145/
3385412.3385978

[40] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer.
2017. Repairing Sequential Consistency in C/C++11. In Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(Barcelona, Spain) (PLDI 2017). Association for Computing Machinery, New York,
NY, USA, 618–632. https://doi.org/10.1145/3062341.3062352

[41] Linux Programmer’s Manual. 2023. membarrier(2) - Linux manual page. http:
//man7.org/linux/man-pages/man2/membarrier.2.html

[42] Paul E. McKenney. 2004. Exploiting Deferred Destruction: An Analysis of Read-
Copy-Update Techniques in Operating System Kernels. Ph. D. Dissertation. OGI
School of Science and Engineering at Oregon Health and Sciences University.

[43] P. E. McKenney and J. D. Slingwine. 1998. Read-copy update: Using execution
history to solve concurrency problems. In PDCS ’98.

[44] Maged M. Michael. 2002. High Performance Dynamic Lock-Free Hash Tables
and List-Based Sets. In Proceedings of the Fourteenth Annual ACM Symposium
on Parallel Algorithms and Architectures (Winnipeg, Manitoba, Canada) (SPAA
’02). Association for Computing Machinery, New York, NY, USA, 73–82. https:

13

https://doi.org/10.1145/3453483.3454060
https://doi.org/10.1145/3519939.3523730
https://doi.org/10.1145/3519939.3523730
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/1693453.1693488
https://arxiv.org/abs/1712.01044
http://arxiv.org/abs/1712.01044
http://arxiv.org/abs/1712.01044
https://doi.org/10.48550/ARXIV.1712.05406
https://doi.org/10.1145/2692916.2555267
https://doi.org/10.1145/2692916.2555267
https://doi.org/10.1145/3332466.3374542
https://doi.org/10.1145/2767386.2767436
https://docs.microsoft.com/en-us/windows/desktop/api/processthreadsapi/nf-processthreadsapi-flushprocesswritebuffers
https://docs.microsoft.com/en-us/windows/desktop/api/processthreadsapi/nf-processthreadsapi-flushprocesswritebuffers
https://doi.org/10.1145/2150976.2150998
https://doi.org/10.1145/2150976.2150998
https://doi.org/10.1145/3276513
https://doi.org/10.1145/2814270.2814298
https://doi.org/10.1145/2755573.2755579
https://doi.org/10.1145/2694344.2694359
https://doi.org/10.1109/TPDS.2011.159
https://doi.org/10.1109/TPDS.2011.159
https://doi.org/10.1007/s00446-002-0079-z
https://github.com/crossbeam-rs/crossbeam
https://github.com/crossbeam-rs/crossbeam
https://doi.org/10.1145/2926697.2926699
http://web.archive.org/web/20080220051535/http://blogs.sun.com/dave/resource/Asymmetric-Dekker-Synchronization.txt
http://web.archive.org/web/20080220051535/http://blogs.sun.com/dave/resource/Asymmetric-Dekker-Synchronization.txt
https://doi.org/10.1145/2692916.2555269
https://doi.org/10.1145/2611462.2611486
https://doi.org/10.1145/1835698.1835736
https://wg21.link/p1202r5
https://doi.org/10.4230/LIPIcs.OPODIS.2016.34
https://doi.org/10.1145/1062247.1062249
https://doi.org/10.1145/1062247.1062249
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/2312005.2312036
https://doi.org/10.1145/2312005.2312036
https://cp.kaist.ac.kr/gc
https://doi.org/10.1145/3093333.3009850
https://doi.org/10.1145/3385412.3385978
https://doi.org/10.1145/3385412.3385978
https://doi.org/10.1145/3062341.3062352
http://man7.org/linux/man-pages/man2/membarrier.2.html
http://man7.org/linux/man-pages/man2/membarrier.2.html
https://doi.org/10.1145/564870.564881
https://doi.org/10.1145/564870.564881

SPAA ’23, June 17–19, 2023, Orlando, FL, USA Jaehwang Jung, Janggun Lee, Jeonghyeon Kim, and Jeehoon Kang

//doi.org/10.1145/564870.564881
[45] Maged M. Michael. 2002. Safe Memory Reclamation for Dynamic Lock-Free

Objects Using Atomic Reads andWrites. In Proceedings of the Twenty-First Annual
Symposium on Principles of Distributed Computing (Monterey, California) (PODC
’02). Association for Computing Machinery, New York, NY, USA, 21–30. https:
//doi.org/10.1145/571825.571829

[46] Maged M. Michael. 2004. Hazard Pointers: Safe Memory Reclamation for Lock-
Free Objects. IEEE Trans. Parallel Distrib. Syst. 15, 6 (June 2004), 491–504. https:
//doi.org/10.1109/TPDS.2004.8

[47] Maged M. Michael and Michael L. Scott. 1996. Simple, Fast, and Practical Non-
Blocking and Blocking Concurrent Queue Algorithms. In PODC 1996.

[48] Aravind Natarajan and Neeraj Mittal. 2014. Fast Concurrent Lock-Free Bi-
nary Search Trees. In Proceedings of the 19th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (Orlando, Florida, USA) (PPoPP
’14). Association for Computing Machinery, New York, NY, USA, 317–328.
https://doi.org/10.1145/2555243.2555256

[49] Ruslan Nikolaev and Binoy Ravindran. 2021. Snapshot-Free, Transparent, and
Robust Memory Reclamation for Lock-Free Data Structures. In Proceedings of the
42nd ACM SIGPLAN International Conference on Programming Language Design
and Implementation (Virtual, Canada) (PLDI 2021). Association for Computing
Machinery, New York, NY, USA, 987–1002. https://doi.org/10.1145/3453483.
3454090

[50] Arunmoezhi Ramachandran and Neeraj Mittal. 2015. A Fast Lock-Free In-
ternal Binary Search Tree. In Proceedings of the 16th International Conference
on Distributed Computing and Networking (Goa, India) (ICDCN ’15). Associ-
ation for Computing Machinery, New York, NY, USA, Article 37, 10 pages.

https://doi.org/10.1145/2684464.2684472
[51] Pedro Ramalhete and Andreia Correia. 2017. Brief Announcement: Hazard Eras -

Non-Blocking Memory Reclamation. In SPAA 2017.
[52] Gal Sela, Maurice Herlihy, and Erez Petrank. 2021. Linearizability: a Typo. CoRR

abs/2105.06737 (2021). arXiv:2105.06737 https://arxiv.org/abs/2105.06737
[53] Niloufar Shafiei. 2019. Non-Blocking Patricia Tries with Replace Operations.

Distrib. Comput. 32, 5 (oct 2019), 423–442. https://doi.org/10.1007/s00446-019-
00347-1

[54] Gali Sheffi, Maurice Herlihy, and Erez Petrank. 2021. VBR: Version Based Recla-
mation. In Proceedings of the 33rd ACM Symposium on Parallelism in Algorithms
and Architectures (Virtual Event, USA) (SPAA ’21). Association for Computing Ma-
chinery, New York, NY, USA, 443–445. https://doi.org/10.1145/3409964.3461817

[55] Gali Sheffi and Erez Petrank. 2022. The ERA Theorem for Safe Memory Recla-
mation. CoRR abs/2211.04351 (2022). https://doi.org/10.48550/arXiv.2211.04351
arXiv:2211.04351

[56] Ajay Singh, Trevor Brown, and Ali Mashtizadeh. 2021. NBR: Neutralization
Based Reclamation. In Proceedings of the 26th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (Virtual Event, Republic of Korea)
(PPoPP ’21). Association for Computing Machinery, New York, NY, USA, 175–190.
https://doi.org/10.1145/3437801.3441625

[57] R. K. Treiber. 1986. Systems programming: coping with parallelism.
[58] Haosen Wen, Joseph Izraelevitz, Wentao Cai, H. Alan Beadle, and Michael L.

Scott. 2018. Interval-based memory reclamation. In PPoPP 2018.
[59] Wikipedia. 2023. ABA problem. https://en.wikipedia.org/wiki/ABA_problem

14

https://doi.org/10.1145/564870.564881
https://doi.org/10.1145/571825.571829
https://doi.org/10.1145/571825.571829
https://doi.org/10.1109/TPDS.2004.8
https://doi.org/10.1109/TPDS.2004.8
https://doi.org/10.1145/2555243.2555256
https://doi.org/10.1145/3453483.3454090
https://doi.org/10.1145/3453483.3454090
https://doi.org/10.1145/2684464.2684472
https://arxiv.org/abs/2105.06737
https://arxiv.org/abs/2105.06737
https://doi.org/10.1007/s00446-019-00347-1
https://doi.org/10.1007/s00446-019-00347-1
https://doi.org/10.1145/3409964.3461817
https://doi.org/10.48550/arXiv.2211.04351
https://arxiv.org/abs/2211.04351
https://doi.org/10.1145/3437801.3441625
https://en.wikipedia.org/wiki/ABA_problem

Applying Hazard Pointers to More Concurrent Data Structures SPAA ’23, June 17–19, 2023, Orlando, FL, USA

A SAFETY PROOF
We restate and prove the safety of our algorithms (Theorem 4.1), first for Algorithm 3 and then for its optimized variant Algorithm 5.

Theorem A.1 (Safety of Algorithm 3). Suppose a concurrent data structure, 𝑆 , reclaims nodes using Algorithm 3 and satisfies Assumption
1. Then 𝑆 does not incur use-after-free.

Proof. To demonstrate the absence of use-after-free, we prove that for each pointer 𝑞, every dereference of 𝑞 happens before (denoted by
hb→) 𝑞’s reclamation.

Consider each dereference of 𝑞. By an assumption of hazard pointers, the dereference happens between the announcement and revocation
of its protection on a hazard pointer slot.15 For convenience, we label the protector thread’s events as follows:
• P1: Announce protection of 𝑞 (line 6)
• P2: Issue SC fence (line 7)
• P3: Check 𝑝 is not invalidated yet (line 8)
• P4: Check 𝑝 still points to 𝑞 (line 10)
• P5: Dereference 𝑞
• P6: Revoke protection of 𝑞
Suppose 𝑞 is reclaimed. Then it should have been unlinked at line 16 and scheduled for invalidation at line 18 in TryUnlink and then

freed at line 35 in Reclaim. Similarly, we label the unlinker and reclaimer threads’ events in the happens-before order as follows:
• R1: Unlink 𝑞 (line 16)
• R2: Invalidate 𝑞 (line 26)
• R3: Issue SC fence (line 29)
• R4: Add 𝑞 to the retired set (line 31)
• R5: Remove 𝑞 from the retired set (line 33)
• R6: Check 𝑞 is not protected by any hazard pointer slots (line 34)
• R7: Free 𝑞 (line 35)
Here, R1-R4 belongs to the unlinker thread and R5-R7 to the reclaimer thread, but the whole events are strictly ordered due to the
synchronization between R4 and R5 on the retired set.

Now we reformulate our proof goal as P5
hb→ R7. We prove the goal by case analysis on the order of P2 and R3. Such a case analysis is safe

even in relaxed-memory concurrency models [5, 38, 40] because the two events are SC fences.

Case 1: P2
hb→ R3. The proof is the same as the original hazard pointers. Since P1

hb→ P2
hb→ R3

hb→ R6 and the announcement of protection at

P1 makes the branch condition at R6 false, the protection should be revoked before R6, or in other words, we have P6
hb→ R6. As such, we

have P5
hb→ P6

hb→ R6
hb→ R7.

Case 2: R3
hb→ P2. In this case, 𝑞 is unlinked before being freshly protected, which is forbidden in the original hazard pointers. As discussed

in §3.1, we rely on 𝑝’s unlinker to invalidate 𝑝 and to forbid the traversal from 𝑝 to 𝑞. But invalidation is not enough because there is
a gap between 𝑝’s unlink at line 16 and invalidation at line 26. In other words, invalidation is not a sound over-approximation but an
under-approximation of the unreachable pointer set. To patch up the problems arising from this under-approximation, 𝑝’s unlinker protects
𝑞 between 𝑝’s unlink and invalidation.

To see how it guarantees safety, we first label the events of the thread that unlinks 𝑝 in the happens-before order as follows:
• U1: Announce protection of 𝑝’s next pointers (line 14)
• U2: Unlink 𝑝 (line 16)
• U3: Invalidate 𝑝 (line 26)
• U4: SC fence (line 29)
• U5: Revoke protection of 𝑝’s next pointers (line 30)

By the strict ordering of SC fences, we have either P2
hb→ U4 or U4

hb→ P2. But the latter is impossible because then we have U3
hb→ U4

hb→
P2

hb→ P3, contradicting the assumption that P3’s check succeeds. As such, we have P2
hb→ U4.

Since R1
hb→ R3

hb→ P2
hb→ P4, we have that 𝑝 still points to 𝑞 even after 𝑞 is unlinked. Then by the assumption of hazard pointers on

unlinking, 𝑝 is also unlinked not after so is 𝑞. In other words, we have either U2
hb→ R1 (𝑝 is unlinked before so is 𝑞) or U2 = R1 (𝑝 and 𝑞 are

unlinked together). But the latter is impossible because then we have U3 = R2
hb→ R3

hb→ P2
hb→ P3, contradicting the assumption that the

check at P3 succeeds. As such, we have U2
hb→ R1.

15The hazard pointer slot may not be invalidated indefinitely, but then 𝑞 will not be reclaimed and thus never incurs use-after-free.

15

SPAA ’23, June 17–19, 2023, Orlando, FL, USA Jaehwang Jung, Janggun Lee, Jeonghyeon Kim, and Jeehoon Kang

By Assumption 1, U1 announces the protection of 𝑞. Since U1
hb→ U2

hb→ R1
hb→ R6 and the announcement of 𝑞’s protection at U1 makes

the branch condition at R6 false, we have U5
hb→ R6.

Putting it all together, we have P1
hb→ P2

hb→ U4
hb→ U5

hb→ R6. Since the announcement of 𝑞’s protection at P1 makes the branch condition

at R6 false, we have P6
hb→ R6. As such, we have P5

hb→ P6
hb→ R6

hb→ R7, concluding the proof. □

Lemma A.2 (Piggyback of ReadEpoch). Suppose 𝑒 is an epoch and L1 and L2 are invocation events of light fence in ReadEpoch that return

𝑒 and 𝑒 + 2, respectively. If L1 hb→ L2, then there exists an invocation event of heavy fence, say 𝐻 , such that L1
hb→ H

hb→ L2.

Proof. Consider the invocation of FenceEpoch that increases fence_epoch to 𝑒 + 2. By the strict ordering of asymmetric fences, we have

either L1
hb→ H or H

hb→ L1. But the latter is impossible because then 𝑒 + 1 read at line 18 before H should be visible to the read of 𝑒 at line 25

after L1, contradicting the coherence. On the other hand, we have H
hb→ L2 because 𝑒 + 2 written at line 20 after H is read at line 22 before L2.

As such, we have L1
hb→ H

hb→ L2. □

Theorem A.3 (Safety of Algorithm 5). Suppose a concurrent data structure, 𝑆 , reclaims nodes using Algorithm 5 and satisfies Assumption
1. Then 𝑆 does not incur use-after-free.

Proof. In the proof of Theorem 4.1, SC fence is used at R3 and U4. A heavy fence is still issued in the place of R3 at line 19 in Algorithm

5. For U4, we instead prove that there exists a heavy fence event, say H, that satisfies U3
hb→ H

hb→ U5. Then the rest of the proof remains
unaffected.

In Algorithm 5, U5 is executed either at line 14 in Reclaim or at line 7 in DoInvalidation. In the former, a heavy fence is executed in

U5’s previous line; and in the latter, we can apply Lemma A.2 from the branch condition. In either case, we have U3
hb→ H

hb→ U5. □

B IN DEPTH DISCUSSION OF HP++’S APPLICABILITY
We discuss how to apply HP++ to the following concurrent data structures. Assumption 1 is satisfied for the data structures in consideration,
as they all mark nodes before detaching, and mark nodes become immutable.

We first note the differences between Table 2 and the original analysis by Singh et al. [56]. We argue that HP (1) does not properly
support Harris’s list [30] (§2.3); and (2) supports Ellen et al. [25, 26]’s binary search trees (BSTs). In particular, their delete operation registers
a descriptor so that the other helper threads can execute the operation on behalf of the deleter thread. The helper threads traverse from
the descriptor so that it can validate the protections required for traversal by reading the same descriptor to prove the reachability of the
protected nodes.

HP++ supports many lists [32, 44] for the same reason as Harris’s list [30]; those data structures supported by NBR because they are
access-aware (§4.2); and Ellen et al. [25]’s and Bronson et al. [6]’s trees because they are already supported by the original HP (§4.2). We can
easily recover from protection failures in these data structures because (1) a node is protected before writing to the shared memory so that
the operation is safe to restart; (2) a node is protected while holding its lock so that it cannot be invalidated and the protection never fails; or
(3) a node is protected for helping the other threads so that the operation is safe to terminate without helping.

Ramachandran and Mittal [50] presents a lock-free internal BST that removes a node by promoting the largest key of its subtree. An
operation first starts in a read-only traversal phase, where protection failure can simply restart. The interesting points are deletion, especially
when an internal node with two children is deleted. When a node to delete, say 𝑛 is found, we (1) traverse the right-subtree to find the
smallest successor node say 𝑠 ; (2) mark 𝑠 and update the key of 𝑛 with the key of 𝑠 ; (3) remove 𝑠 ; (4) replace 𝑛 with an unmarked version of
𝑛; and (5) we may perform helping and additional traversals from 𝑛 as needed. Our actions on protection differ depending on the execution
of the linearization point in (2), when the update on 𝑛 succeeds. If protection from 𝑛 fails before the update, then another thread has deleted
this node first, so the operation restarts. If protection from 𝑛 fails after the update then another thread has done helping, so the operation
can simply return. If protection from 𝑠 fails, it must be after the linearization point, so we can simply return. All the other protection failures
must have been during a traversal from 𝑛, so we can simply restart the traversal from 𝑛.

Drachsler et al. [24] presents an external BST with logical ordering in the form of a sorted doubly linked list. In an update, a search will
first traverse down the tree, and then traverse the list to find the desired node. Then, the thread will acquire all locks related to the desired
node and perform updates. The operation can easily be recovered from protection failures as follows. (1) Before acquiring the first lock, the
traversal is read-only, so we can simply restart the operation. (2) After acquiring a lock for a node edge, protection against outgoing edges is
guaranteed to succeed as modifying it would require locking the node. As such, no restarts can happen while holding a lock.

Brown et al. [10] is an interpolation tree that performs rebuilding when too many nodes become empty, by replacing it with an optimized
subtree. Similar to other trees, the nodes first start in a read-only traversal phase, where protection failure can simply restart. If the terminal
node is marked for rebuilding, an update is performed, and the subtrees found during the traversal paths are rebuilt if necessary. Otherwise,
helping is performed on the found node. During rebuilding, if protection fails, then the node of interest has already been unlinked, hence
rebuilding is done so the helping can simply terminate.

16

Applying Hazard Pointers to More Concurrent Data Structures SPAA ’23, June 17–19, 2023, Orlando, FL, USA

C THE FULL EXPERIMENTAL EVALUATION RESULTS

1 8 16 24 32 40 48 56 64 72 80
Threads

0

0.5

1

1.5

2

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HMList

1 8 16 24 32 40 48 56 64 72 80
Threads

0

50

100

HashMap

1 8 16 24 32 40 48 56 64 72 80
Threads

0

20

40

EFRBTree

1 8 16 24 32 40 48 56 64 72 80
Threads

0

20

40

60

Th
ro

ug
hp

ut
 (M

 o
p/

s)

NMTree

1 8 16 24 32 40 48 56 64 72 80
Threads

0

0.1

0.2

0.3

0.4

Bonsai

1 8 16 24 32 40 48 56 64 72 80
Threads

0

10

20

30

40

SkipList

Figure 12: Throughput (million operations per second) of write-only workloads for a varying number of threads.

1 8 16 24 32 40 48 56 64 72 80
Threads

0

0.5

1

1.5

2

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HMList

1 8 16 24 32 40 48 56 64 72 80
Threads

0

0.5

1

1.5

2

HHSList

1 8 16 24 32 40 48 56 64 72 80
Threads

0

50

100

150

HashMap

1 8 16 24 32 40 48 56 64 72 80
Threads

0

20

40

60

EFRBTree

1 8 16 24 32 40 48 56 64 72 80
Threads

0

20

40

60

Th
ro

ug
hp

ut
 (M

 o
p/

s)

NMTree

1 8 16 24 32 40 48 56 64 72 80
Threads

0

0.25

0.50

0.75

Bonsai

1 8 16 24 32 40 48 56 64 72 80
Threads

0

20

40

60
SkipList

Figure 13: Throughput (million operations per second) of read-write workloads for a varying number of threads.

1 8 16 24 32 40 48 56 64 72 80
Threads

0

0.5

1

1.5

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HMList

1 8 16 24 32 40 48 56 64 72 80
Threads

0

0.5

1

1.5

HHSList

1 8 16 24 32 40 48 56 64 72 80
Threads

0

50

100

150

200

250
HashMap

1 8 16 24 32 40 48 56 64 72 80
Threads

0

25

50

75

EFRBTree

1 8 16 24 32 40 48 56 64 72 80
Threads

0

25

50

75

100

Th
ro

ug
hp

ut
 (M

 o
p/

s)

NMTree

1 8 16 24 32 40 48 56 64 72 80
Threads

0

1

2

3

4

Bonsai

1 8 16 24 32 40 48 56 64 72 80
Threads

0

20

40

60

SkipList

Figure 14: Throughput (million operations per second) of read-most workloads for a varying number of threads.

17

SPAA ’23, June 17–19, 2023, Orlando, FL, USA Jaehwang Jung, Janggun Lee, Jeonghyeon Kim, and Jeehoon Kang

1 8 16 24 32 40 48 56 64 72 80
Threads

0

5000

10000

15000

20000

Pe
ak

 u
nr

ec
la

im
ed

 m
em

or
y

bl
oc

ks

HMList

1 8 16 24 32 40 48 56 64 72 80
Threads

0

20000

40000

60000

HashMap

1 8 16 24 32 40 48 56 64 72 80
Threads

0

30000

60000

90000

EFRBTree

1 8 16 24 32 40 48 56 64 72 80
Threads

0

50000

100000

Pe
ak

 u
nr

ec
la

im
ed

 m
em

or
y

bl
oc

ks

NMTree

1 8 16 24 32 40 48 56 64 72 80
Threads

0

50000

100000

150000

Bonsai

1 8 16 24 32 40 48 56 64 72 80
Threads

0

10000

20000

30000

40000

50000

SkipList

Figure 15: Peak number of unreclaimed blocks of write-only workloads for a varying number of threads.

1 8 16 24 32 40 48 56 64 72 80
Threads

0

5000

10000

15000

20000

Pe
ak

 u
nr

ec
la

im
ed

 m
em

or
y

bl
oc

ks

HMList

1 8 16 24 32 40 48 56 64 72 80
Threads

0

5000

10000

15000

20000
HHSList

1 8 16 24 32 40 48 56 64 72 80
Threads

0

20000

40000

60000

HashMap

1 8 16 24 32 40 48 56 64 72 80
Threads

0

25000

50000

75000

EFRBTree

1 8 16 24 32 40 48 56 64 72 80
Threads

0

30000

60000

90000

Pe
ak

 u
nr

ec
la

im
ed

 m
em

or
y

bl
oc

ks

NMTree

1 8 16 24 32 40 48 56 64 72 80
Threads

0

50000

100000

150000

Bonsai

1 8 16 24 32 40 48 56 64 72 80
Threads

0

10000

20000

30000

40000

SkipList

Figure 16: Peak number of unreclaimed blocks of read-write workloads for a varying number of threads.

1 8 16 24 32 40 48 56 64 72 80
Threads

0

2500

5000

7500

Pe
ak

 u
nr

ec
la

im
ed

 m
em

or
y

bl
oc

ks

HMList

1 8 16 24 32 40 48 56 64 72 80
Threads

0

2500

5000

7500

HHSList

1 8 16 24 32 40 48 56 64 72 80
Threads

0

10000

20000

30000

HashMap

1 8 16 24 32 40 48 56 64 72 80
Threads

0

10000

20000

30000
EFRBTree

1 8 16 24 32 40 48 56 64 72 80
Threads

0

10000

20000

30000

40000

Pe
ak

 u
nr

ec
la

im
ed

 m
em

or
y

bl
oc

ks

NMTree

1 8 16 24 32 40 48 56 64 72 80
Threads

0

50000

100000

150000

Bonsai

1 8 16 24 32 40 48 56 64 72 80
Threads

0

4000

8000

12000

SkipList

Figure 17: Peak number of unreclaimed blocks of read-most workloads for a varying number of threads.

18

Applying Hazard Pointers to More Concurrent Data Structures SPAA ’23, June 17–19, 2023, Orlando, FL, USA

1 8 16 24 32 40 48 56 64 72 80
Threads

0

20

40

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HMList

1 8 16 24 32 40 48 56 64 72 80
Threads

0

100

200

300

HashMap

1 8 16 24 32 40 48 56 64 72 80
Threads

0

100

200

300

400

EFRBTree

1 8 16 24 32 40 48 56 64 72 80
Threads

0

100

200

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

NMTree

1 8 16 24 32 40 48 56 64 72 80
Threads

0

200

400

600

800

Bonsai

1 8 16 24 32 40 48 56 64 72 80
Threads

0

2000

4000

6000

SkipList

Figure 18: Peak number of memory usage of write-only workloads for a varying number of threads.

1 8 16 24 32 40 48 56 64 72 80
Threads

0

20

40

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HMList

1 8 16 24 32 40 48 56 64 72 80
Threads

0

20

40

HHSList

1 8 16 24 32 40 48 56 64 72 80
Threads

0

50

100

150

200

HashMap

1 8 16 24 32 40 48 56 64 72 80
Threads

0

100

200

300

EFRBTree

1 8 16 24 32 40 48 56 64 72 80
Threads

0

50

100

150

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

NMTree

1 8 16 24 32 40 48 56 64 72 80
Threads

0

200

400

600

Bonsai

1 8 16 24 32 40 48 56 64 72 80
Threads

0

1000

2000

3000

4000

5000
SkipList

Figure 19: Peak number of memory usage of read-write workloads for a varying number of threads.

1 8 16 24 32 40 48 56 64 72 80
Threads

0

10

20

30

40

50

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

HMList

1 8 16 24 32 40 48 56 64 72 80
Threads

0

10

20

30

40

50

HHSList

1 8 16 24 32 40 48 56 64 72 80
Threads

0

20

40

60

HashMap

1 8 16 24 32 40 48 56 64 72 80
Threads

0

30

60

90

EFRBTree

1 8 16 24 32 40 48 56 64 72 80
Threads

0

20

40

60

Pe
ak

 m
em

or
y

us
ag

e
(M

iB
)

NMTree

1 8 16 24 32 40 48 56 64 72 80
Threads

0

100

200

300

400

500
Bonsai

1 8 16 24 32 40 48 56 64 72 80
Threads

0

500

1000

SkipList

Figure 20: Peak number of memory usage of read-most workloads for a varying number of threads.

19

SPAA ’23, June 17–19, 2023, Orlando, FL, USA Jaehwang Jung, Janggun Lee, Jeonghyeon Kim, and Jeehoon Kang

1 8 16 24 32 40 48 56 64 72 80
Threads

0

300

600

900

Av
g.

 U
nr

ec
la

im
ed

 m
em

or
y

bl
oc

ks

HMList

1 8 16 24 32 40 48 56 64 72 80
Threads

0

10000

20000

HashMap

1 8 16 24 32 40 48 56 64 72 80
Threads

0

10000

20000

30000

EFRBTree

1 8 16 24 32 40 48 56 64 72 80
Threads

0

10000

20000

30000

40000

Av
g.

 U
nr

ec
la

im
ed

 m
em

or
y

bl
oc

ks

NMTree

1 8 16 24 32 40 48 56 64 72 80
Threads

0

5000

10000

15000
Bonsai

1 8 16 24 32 40 48 56 64 72 80
Threads

0

2500

5000

7500

10000

12500
SkipList

Figure 21: Average number of unreclaimed blocks of write-only workloads for a varying number of threads.

1 8 16 24 32 40 48 56 64 72 80
Threads

0

250

500

750

Av
g.

 U
nr

ec
la

im
ed

 m
em

or
y

bl
oc

ks

HMList

1 8 16 24 32 40 48 56 64 72 80
Threads

0

250

500

750

HHSList

1 8 16 24 32 40 48 56 64 72 80
Threads

0

5000

10000

15000

20000

HashMap

1 8 16 24 32 40 48 56 64 72 80
Threads

0

5000

10000

15000

20000

EFRBTree

1 8 16 24 32 40 48 56 64 72 80
Threads

0

10000

20000

Av
g.

 U
nr

ec
la

im
ed

 m
em

or
y

bl
oc

ks

NMTree

1 8 16 24 32 40 48 56 64 72 80
Threads

0

5000

10000

15000

Bonsai

1 8 16 24 32 40 48 56 64 72 80
Threads

0

2000

4000

6000

8000

SkipList

Figure 22: Average number of unreclaimed blocks of read-write workloads for a varying number of threads.

1 8 16 24 32 40 48 56 64 72 80
Threads

0

200

400

600

Av
g.

 U
nr

ec
la

im
ed

 m
em

or
y

bl
oc

ks

HMList

1 8 16 24 32 40 48 56 64 72 80
Threads

0

200

400

600

HHSList

1 8 16 24 32 40 48 56 64 72 80
Threads

0

1000

2000

3000

4000

HashMap

1 8 16 24 32 40 48 56 64 72 80
Threads

0

1000

2000

3000

4000

5000

EFRBTree

1 8 16 24 32 40 48 56 64 72 80
Threads

0

1000

2000

3000

4000

Av
g.

 U
nr

ec
la

im
ed

 m
em

or
y

bl
oc

ks

NMTree

1 8 16 24 32 40 48 56 64 72 80
Threads

0

5000

10000

15000
Bonsai

1 8 16 24 32 40 48 56 64 72 80
Threads

0

500

1000

1500

SkipList

Figure 23: Average number of unreclaimed blocks of read-most workloads for a varying number of threads.

20

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Hazard Pointers
	2.2 Over-approximating Unreachability
	2.3 Inapplicability to Optimistic Traversal
	2.4 Other Reclamation Schemes and Trade-Offs

	3 Design
	3.1 Key Idea
	3.2 Interface
	3.3 Implementation
	3.4 Optimization

	4 Analysis
	4.1 Safety
	4.2 Applicability
	4.3 Lock-Freedom
	4.4 Robustness

	5 Experimental Evaluation
	6 Related Work
	Acknowledgments
	References
	A Safety Proof
	B In depth Discussion of HP++'s Applicability
	C The Full Experimental Evaluation Results

