
Expediting Hazard Pointers with Bounded RCU Critical Sections
Jeonghyeon Kim

jeonghyeon.kim@kaist.ac.kr
KAIST

Daejeon, Korea

Jaehwang Jung
jaehwang.jung@kaist.ac.kr

KAIST
Daejeon, Korea

Jeehoon Kang
jeehoon.kang@kaist.ac.kr

KAIST
Daejeon, Korea

ABSTRACT
Reclamation schemes for concurrent data structures tackle the chal-
lenge of synchronizing memory accesses and reclamation. Early
schemes faced a tradeoff between robustness and efficiency: hazard
pointers (HP) bounds the number of unreclaimed nodes, but it is in-
efficient due to per-node protection; and RCU sacrifices robustness
for efficiency as a single thread may block the entire reclamation.
Recent schemes attempt to break the tradeoff by sending signals to
blocking threads to abort their operations. However, they are (1) in-
efficient due to starvation in long-running operations and frequent
signals, and (2) inapplicable to a wide class of data structures.

We design a novel reclamation scheme that overcomes the above
limitations. To address the long-running operations and applica-
bility, we proposeHP-RCU, integrating RCU-expedited traversal
that alternates between HP and RCU phases. To additionally ensure
robustness against stalled threads, we develop HP-BRCU by mod-
ularly replacing RCU with bounded RCU (BRCU) that efficiently
bounds the duration of RCU phases by rarely sending signals. We
show that HP-BRCU is robust, widely applicable, and as efficient as
RCU, outperforming robust schemes across various workloads.

CCS CONCEPTS
•Computingmethodologies→Concurrent algorithms; • Soft-
ware and its engineering→ Garbage collection.

KEYWORDS
concurrency, memory management, hazard pointers, read-copy-
update
ACM Reference Format:
Jeonghyeon Kim, Jaehwang Jung, and Jeehoon Kang. 2024. Expediting Haz-
ard Pointers with Bounded RCU Critical Sections. In Proceedings of the
36th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA
2024), June 17–21, 2024, Nantes, France. ACM, New York, NY, USA, 34 pages.
https://doi.org/10.1145/3626183.3659941

1 INTRODUCTION
Reclamation schemes [1, 2, 8, 18, 19, 25, 31, 32, 35, 36, 40, 43, 45, 48,
50] for concurrent data structures tackle the challenging task of
synchronizing memory accesses and reclamation. Without proper
synchronization, concurrent data structures would incur safety
errors such as use-after-free andmore subtle ABA problems [51]. To
prevent such errors, data structures employ reclamation schemes to

This work is licensed under a Creative Commons Attribution
International 4.0 License.

SPAA 2024, June 17–21, 2024, Nantes, France.
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0416-1/24/06
https://doi.org/10.1145/3626183.3659941

NR RCU HP NBR HP-RCU (§3) HP-BRCU (§4)

218 219 220 221 222 223 224 225

Length of a read operation

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Th
ro

ug
hp

ut
 ra

tio
 to

 N
R

(a) Throughput

218 219 220 221 222 223 224 225

Length of a read operation

0

10

20

30

40

50

60

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0³

)

(b) Peak # of unrecl. blocks

Figure 1: Throughput and peak number of unreclaimed
blocks of long-running read operations.

retire the unlinked nodes to schedule their reclamation, and protect
the nodes that might be in use to defer their reclamation sufficiently.

Early reclamation schemes face a tradeoff between robustness and
efficiency. Hazard pointers [35, 36] (HP) is robust in that it bounds
the number of retired yet unreclaimed nodes by the number of indi-
vidually protected local pointers. However, HP is not efficient due to
the per-node traversal overhead incurred by individual protection.
On the other hand, RCU [31, 32] provides efficient coarse-grained
protection for local pointers without per-node protections. Nev-
ertheless, RCU is not robust because a single thread that is either
(1) stalled (e.g., preempted) or (2) executing long-running operation
(e.g., long traversal and OLAP [9]) may logically protect all nodes
in the memory, thereby blocking their reclamation.

Several recent reclamation schemes [1, 2, 8, 48, 49] attempt to
break the tradeoff between robustness and efficiency through signal-
based rollback. For efficiency, DEBRA+ [8] and NBR(+) [48, 49]
protect local pointers in a coarse-grained fashion, similar to RCU.
For robustness, upon reaching the batch threshold of retired nodes,
they send signals to blocking threads, forcefully aborting and rolling
back their ongoing operations. This process ensures that old retired
nodes are no longer accessed and thus safe to reclaim.

Problem. However, the coarse-grained signal strategy of DEBRA+
and NBR(+), in fact, sacrifices efficiency for robustness. (1) The
application is made starving in long-running operations, which
continuously roll back without ever reaching completion if the
duration of operations exceeds the signal frequency. For example,
Figure 1 depicts the throughput and peak number of unreclaimed
blocks for long-running read operations under a heavy load of
reclamation. While NBR(+) maintains constant memory usage, its
throughput declines nearly to zero after reaching a specific length of
an operation. (2) The frequent signals degrade the performance. For
each batch, NBR sends expensive signals to all concurrent threads
to abort potentially ongoing operations, whose overhead is not
easily amortized even with a large batch threshold: while it may

https://orcid.org/0009-0000-7070-3578
https://orcid.org/0000-0001-6099-2644
https://orcid.org/0000-0002-2115-0871
https://doi.org/10.1145/3626183.3659941
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3626183.3659941

SPAA 2024, June 17–21, 2024, Nantes, France. Jeonghyeon Kim, Jaehwang Jung, and Jeehoon Kang

alleviate the overhead of signaling, it increases the cache misses
during traversals and reclamations due to a large memory footprint.

Additionally, DEBRA+ and NBR(+) do not apply to a wide class
of concurrent data structures. DEBRA+ necessitates recovery code
for cleaning up aborted operations, but it remains unclear how
to design this for general data structures. In particular, DEBRA+
does not apply to those data structures that internally use locks [10,
21]. While NBR has wider applicability, it is still limited to access-
aware [46] data structure, where after an operation performs writes,
successive reads during traversal must start only from data structure
entry points. As such, NBR does not apply to data structures such
as the Harris-Michael list [36] and lock-free skip list [22].

Contributions. We present a robust, efficient, and widely applica-
ble [46] reclamation scheme that resolves the above limitations.

In §3, we first build our initial solution HP-RCU that breaks
the tradeoff between efficiency and robustness in a long-running
traversal. Specifically, it alternates between the phases of HP and
RCU during the traversal, which we refer to as RCU-expedited tra-
versal. For efficiency, the majority of traversal steps (i.e., following
links) occur in RCU phases, circumventing most of HP’s per-node
overheads. To address long-running operations, the traversal peri-
odically checkpoints acquired local pointers with HP and re-initiates
the RCU phase, prompting the reclamation process. Moreover, it is
more applicable than HP and NBR because (1) it supports optimistic
traversal [24], and (2) it can resume a traversal not only from the
entry points but also from an arbitrary checkpointed node. Figure 1
demonstrates that HP-RCU maintains consistent throughput while
showing a reasonably bounded memory footprint.

In §4, we develop our full solution HP-BRCU that additionally
provides robustness against stalled threads. We first design bounded
RCU (BRCU), a separate epoch-based RCU implementation [18, 19]
that captures the essence of signal-based rollback to efficiently
bound the duration of critical sections. We then modularly replace
RCU with BRCU in HP-RCU. BRCU’s signaling policy is more ef-
ficient than NBR(+) because it selectively sends signals, targeting
only the slow threads. Indeed, Figure 1 shows that HP-BRCU main-
tains almost the same throughput as HP-RCU, while exhibiting a
comparable memory footprint to HP and NBR(+).

In §5 and §6, we theoretically and experimentally demonstrate
that HP-BRCU is indeed robust; as efficient as RCU, outperforming
the existing robust schemes such as HP, NBR(+), and VBR [45]
for a variety of workloads; and applicable to a wide class of data
structures including Harris’s list [19] with optimistic traversal [24],
Harris-Michael list [34] and Natarajan-Mittal tree [37] with helping,
and lock-free skiplist [22] with reference counting.

In §7, we conclude the paper by discussing related works. To the
best of our knowledge, HP-BRCU is the only scheme that achieves
robustness against stalled threads and long-running operations
while maintaining efficiency (see Table 2 for details).

2 BACKGROUND AND MOTIVATION
2.1 Hazard Pointers
HP [35, 36] guarantees safety by preventing the reclamation of each
thread’s local pointers protected individually. Algorithm 1 presents

Algorithm 1 HP interface and implementation
1: struct Shield
2: function new()→ Shield

3: method protect(ptr: void*)

4: function ProtectFrom<T>(shield: &Shield, src: &Atomic<T>)
5: ptr← src.load()

6: loop
7: shield.protect(ptr); fence(SC)
8: ptr_validate← src.load()

9: if ptr = ptr_validate then return
10: ptr← ptr_validate

11: function Retire<T>(ptr: T*)
12: function Reclaim()
13: take retired pointers; fence(SC)
14: check shields and reclaim unprotected retired pointers

Protected Retired Reclaimed Unmarked Marked

𝑝 𝑞 𝑠𝑟
𝑇!prev curr𝑇"

(a)𝑇2 physically unlinks 𝑞 and 𝑟 .

𝑝 𝑠𝑟
prev curr

𝑞
𝑇"

(b)𝑇 1 protects and accesses 𝑟 .

Figure 2: Use-after-free error of Harris’s list with HP.

HP’s interface and implementation.1 A Shield is a protection slot for
a local pointer to a shared object. A thread may create a new() shield
and protect() a local pointer. However, even after protecting it, a
pointer is still unsafe to dereference because a concurrent thread
may already have Retired and Reclaimed it. To ensure safety, the
thread should validate that the protected pointer is not retired yet.
Validation strategy drastically differs among data structures, and it
is one of the most challenging aspects of using HP [46].

In data structures where each node is unlinked from its prede-
cessor before being retired, it is possible to employ a validation
strategy that simply checks whether the node is still reachable from
its predecessor. The ProtectFrom helper function streamlines pro-
tection validation for those cases. It first loads a local pointer from
a shared source location (line 5). If the pointer remains the same
(line 9) after publishing its protection (line 7), it is reachable from
the source and thus not retired yet. Then even after another thread
Retires that pointer, a subsequent call of Reclaim will observe the
announced protection (line 14), delaying the reclamation.

Tradeoff. HP is robust against stalled threads and long-running
operations: retired nodes remain unreclaimed only if they are indi-
vidually protected by a shield, and the number of shields is bounded
by client data structures. However, HP is not efficient: it degrades
the performance of the original data structure because it incurs
per-node overhead. Specifically, each traversed node needs to be
written to a shield and re-read for validation. We observe that HP
underperforms RCU for read-heavy workloads (see §6).

Moreover, validation makes it challenging to apply HP to highly
efficient optimistic traversal strategy [6, 14, 19, 23, 24, 37, 42] that
follows a link from possibly retired nodes. For instance, Figure 2

1We present all algorithms in Rust-style pseudo codes. We also assume C/C++ memory
model, but omit the release and acquire orderings for concision; and write fence(SC)
for atomic_thread_fence(memory_order_seq_cst).

Expediting Hazard Pointers with Bounded RCU Critical Sections SPAA 2024, June 17–21, 2024, Nantes, France.

Algorithm 2 RCU interface
1: function CriticalSection<R>(body: fn()→ R)→ R

2: function Defer(task: fn())

illustrates a potential problem of applying HP to Harris’s list [19].
Figure 2a: Suppose a thread, say 𝑇1, traverses and protects p and q

and another thread, say 𝑇2, unlinks and retires q and r from the list
at once. Since r is not protected, it can be reclaimed. Figure 2b: But
then 𝑇1 may follow the link from the retired node q to r, leading to
use-after-free error without validation. HP++ [24] generalizes HP
to support optimistic traversal by protecting more nodes (e.g., r by
𝑇2), but its additional protection incurs performance overhead.

2.2 Epoch-Based RCU
RCU [31, 32] is a general task scheduler that applies also to recla-
mation. RCU overcomes HP’s drawback on per-node overhead by
logically protecting multiple nodes in a coarse-grained fashion.
Algorithm 2 presents RCU’s interface. The CriticalSection func-
tion delimits a critical section inside which a thread executes an
operation. A thread may Defer the execution of a task until all
concurrent threads exit their ongoing critical sections. When using
RCU for safe reclamation, a critical section logically protects all
nodes that are reachable from data structure entry points at its
beginning. Once a node becomes unreachable, a thread Defers its
reclamation. It is safe because deferred reclamation will not be exe-
cuted until all ongoing critical sections conclude, and any critical
sections occurring after the deferring cannot reach that node.

Epoch-based RCU implementations [18, 19] ensure Defer’s cor-
rectness with an epoch, a monotonically increasing integer. For ex-
ample, Fraser [18]’s implementation works as follows: (1) a global
epoch is shared across all threads; (2) each critical section starts
with assigning the global epoch to its local epoch; and (3) the epochs
of any concurrent critical sections must differ by at most one. If a
task is deferred at the global epoch 𝑒 , then it is safe to execute it
at the epoch 𝑒 + 2 because all concurrent critical sections with the
local epoch 𝑒 or 𝑒 − 1 must have exited beforehand.

Tradeoff. RCU is efficient and widely applicable: it does not incur
per-node overhead and its coarse-grained protection allows opti-
mistic traversal. However, RCU is not robust against stalled threads
or long-running operations because a single critical section may
logically protect all nodes, thereby blocking their reclamation.

2.3 Signal-Based Rollback
Several recent reclamation schemes overcome the tradeoff between
robustness and efficiency [2, 8, 25, 43, 45, 48, 50], but they have
their own limitations. Here, we focus on the two schemes based
on signal-based rollback that are closely related to our solution
HP-BRCU and discuss the other methods in §7.

DEBRA+ [4, 8] and NBR(+) [48, 49] use signaling (e.g., POSIX
pthread_kill [29]) for robust and efficient reclamation. Similarly
to the efficient RCU scheme, threads in both schemes first enter
a critical section (non-quiescent state in DEBRA+ and read phase
in NBR) that does not require per-node protections. For robust
reclamation of old retired nodes, reclaiming threads may forcefully
abort the other threads within critical sections by sending signals,

which makes the recipient immediately abort the critical section
and roll back, i.e., exit the critical section and re-run the interrupted
task via a non-local jump (e.g., POSIX sigsetjmp).

Efficiency. As we have already discussed in §1, prior reclama-
tion schemes with signal-based rollback sacrifice efficiency for
robustness: (1) DEBRA+, NBR indeed sacrifice efficiency for ro-
bustness suffering from starvation in long-running operations, e.g.,
long traversal or OLAP [9]. This limitation is also applied to other
schemes [25, 45] that involve a strategy of restarting an ongoing
operation. (2) NBR(+) degrades its performance due to its frequent
signals, which are sent to all threads for each batch. While NBR+
alleviates this problem by timestamping signals to piggyback on
other threads’ signals, its overhead of reclamation is not amortized
easily even with a large batch threshold due to the increased cache
misses from a large memory footprint. (see §6 for detail).

Applicability. Since the critical section can be aborted or re-run,
it must not contain any important shared memory modifications
including linearization points to avoid semantics violations.

DEBRA+ requires recovery code to clean up the aborted operation:
upon receiving a signal, the thread quits the critical section, runs the
recovery code, and then restarts the operation. Brown [8] proposes a
recovery strategy for helping-based lock-free data structures whose
operations can be structured as follows: (1) the body of a critical
section publishes an operation descriptor; (2) body’s execution can
be helped by the recovery code or the other threads; and (3) the rest
of the operation is run outside the critical section. Since the helping
procedure may run in recovery code outside critical sections, the
nodes associated with the descriptor are protected in HP shields
before publishing it. However, it is unclear how to apply such a
helping-based recovery strategy to other data structures.

NBR(+) admits a simple recovery strategy by limiting its scope
to so-called access-aware [46] data structures, whose operations are
strictly divided into alternating sequences of read phase and write
phase. The read phase functions as a critical section where only
reads from the entry points are allowed. When transitioning to a
write phase, the necessary nodes are protected in HP shields as in
DEBRA+. This systematic interface allows application to more lock-
free data structures and some lock-based data structures. However,
this requirement makes NBR inapplicable to algorithms that per-
form helping (e.g., physical deletion) during traversal, e.g., Harris-
Michael list [34] and lock-free skip list [22] (see Table 1 for detail).
Specifically, after conducting helping writes, it must restart the
entire traversal because it cannot resume from the protected nodes.

3 HP-RCU: OPTIMIZING HAZARD POINTERS
WITH RCU CRITICAL SECTIONS

3.1 RCU-Expedited Traversal
HP-RCU is a backward-compatible extension of HP that supports
RCU-expedited traversals. It alternates between the phases of HP
(fine-grained protection of individual pointers) and RCU (coarse-
grained protection of any reachable pointers) during traversals.
Figure 3 illustrates an example traversal on a linked list. Figure
3a: Initially in an HP phase, the nodes 𝑎, 𝑏 at the entry point of
the linked list are protected by shields. Figure 3b: Entering an
RCU phase, the traversal follows a certain number of links from

SPAA 2024, June 17–21, 2024, Nantes, France. Jeonghyeon Kim, Jaehwang Jung, and Jeehoon Kang

Protected by HP LinkProtected by RCU Validated

𝑎 𝑏 𝑐 𝑑
prev cur

𝑒 𝑓ENTRY (…) (…)

(a) In a HP phase, 𝑎 and 𝑏 are protected in shields.

𝑎 𝑏 𝑐 𝑑 𝑒 𝑓ENTRY (…) (…)

prev cur

Advances 𝑛 steps

(b) In an RCU phase, the source 𝑏 is validated; 𝑛 links are followed;
and checkpoint nodes 𝑐 and 𝑑 are protected in shields.

𝑎 𝑏 𝑐 𝑑 𝑒 𝑓ENTRY (…) (…)

prev cur

Advances 𝑛 steps

(c) Repeats the step (3b) until reaching the destination 𝑓 .

Figure 3: Example RCU-expedited traversal on a linked list.

𝑎, 𝑏 in a critical section. Similar to HP, it validates that 𝑏 is still
reachable from the entry point before following a link from it;
but in contrast to HP, pointers acquired in RCU phases are safe
to dereference without individual protection or validation. Before
exiting the RCU critical section and phase, the traversal checkpoints
ultimately acquired local pointers 𝑐, 𝑑 to use in the next phase, by
individually protecting them with HP shields. However, unlike HP,
the protections do not need to be validated because they cannot
be reclaimed thanks to the RCU critical section (see §3.2 for how it
works). Figure 3c: The traversal continues by alternating between
HP and RCU phases until reaching the destination 𝑓 .

By following themajority of links in RCU phases, HP-RCU avoids
most of HP’s per-node overhead and validation efforts. At the same
time, despite its use of RCU critical sections, HP-RCU enjoys HP’s
robustness against long-running operations when a traversal is
split into multiple critical sections with a bounded number of in-
structions. (See §5 for a more detailed analysis.)

Example. Algorithm 3 presents an RCU-expedited search algo-
rithmTrySearch (line 7) for Harris-Michael list [34], which searches
and protects the position of a key. All RCU critical sections are high-
lighted in green , and HP protections are highlighted in yellow .
The first critical section, triggered in InitCursor (line 14)2, loads
prev from ENTRY, initializes cur (line 16), and protects them with
dedicated shields (line 17). Subsequently, the entire traversal in-
volves iteratively executing Steps (line 18), which advances the
local pointers a bounded number of times. The repetition condition
and validation of cur are highlighted in red . At its beginning,
Steps validates that cur, the source of the ongoing traversal, is not
marked (line 24).3 By observing that cur is not marked, the traversal
ensures that cur is not retired yet and traversal is safe to resume.
Throughout the traversal, when following a link from a local pointer
created within the critical section, the target node, such as next
(line 23), is logically protected by RCU. Upon completing a traver-
sal with a bounded length, it protects the acquired local pointers
which the client will dereference (line 32), and checks whether it has
reached a destination node (line 33). If so, the traversal concludes
by returning whether the key was found.

2While InitCursor is in an RCU phase, it can also be implemented in a HP phase.
3Note that this validation stems from the original data structure implementation.

Algorithm 3 RCU-expedited Harris-Michael list search
1: global variable
2: ENTRY: Atomic<Node*> ⊲ The entry point of the linked list.
3: thread-local variables
4: prev, cur: Node*; prev_s, cur_s: Shield
5: enum StepResult<R>

6: Finish(R), Continue, Fail

7: function TrySearch(key: Key)→ Option<bool>

8: InitCursor() ⊲ Initialize prev and cur by following ENTRY.
9: loop
10: match Steps(key) ⊲ Advance multiple steps at once.
11: case Finish(found) then return Some(found)

12: case Continue then continue
13: case Fail then return None

14: function InitCursor()
15: CriticalSection(𝜆.
16: prev← ENTRY.load(); cur← (*prev).next.load()

17: prev_s.protect(prev); cur_s.protect(cur)) ⊲ Protect within CS (R2)

18: function Steps(key: Key)→ StepResult<bool>

19: return CriticalSection(𝜆.
20: found← None

21: repeatMaxSteps times
22: if cur = ⊥ then break
23: next← (*cur).next.load()

24: if next.tag() ≠ 0 then ⊲ Validation (R1)
25: next← next.with_tag(0)

26: match (*prev).next.cas(cur, next) ⊲ Physical deletion
27: case Ok then Retire(cur); cur← next; continue
28: case Err then return Fail

29: if (*cur).key ≥ key then
30: found← Some((*cur).key = key); break
31: prev← cur; cur← next

32: prev_s.protect(prev); cur_s.protect(cur) ⊲ Protect within CS (R2)
33: if let Some(f)← found then return Finish(f)

34: return Continue)

Algorithm 4 Two-step retirement
1: function Retire<T>(ptr: T*)
2: RCU-Defer(𝜆. HP-Retire(ptr)) ⊲ From Algorithm 1 and Algorithm 2

3.2 Two-Step Retirement
HP-RCU is directly built on top of HP and RCU. In fact, HP-RCU
reuses the original implementations of HP’s Shield, Reclaim and
RCU’s CriticalSection without modifications. Only the Retire
function is reimplemented with HP-Retire4 (Algorithm 1) and
RCU-Defer4 (Algorithm 2), as illustrated in Algorithm 4.

Recall from §2.1 that HP-Retire schedules the reclamation of
an unlinked node until it is no longer protected by any Shields.
However, invoking HP-Retire for unlinked nodes in the presence
of RCU phases leads to use-after-free errors because a traversal
within a critical section follows links without any protections with
HP. To ensure safety, we employ two-step retirement: an unlinked
node’s HP-Retire is RCU-Defered (line 2). Then a Retired pointer

4For clarity, we prepend SMR scheme names to those functions.

Expediting Hazard Pointers with Bounded RCU Critical Sections SPAA 2024, June 17–21, 2024, Nantes, France.

𝑇!: Retire(𝑝) HP-Retire(𝑝)

scheduled defer-executed reclaimed
time

begins
CriticalSection

Shield

ends

protect(𝑝) unprotect()

𝑇":

Reclaim()

hb hb

hb

hb

Figure 4: Timeline of retiring (by 𝑇1) and dereferencing (by
𝑇2) pointer 𝑝. hb stands for happens-before relation.

is eventually Reclaimed after (1) all ongoing critical sections con-
clude (coarse-grained), and then (2) it is no longer protected by any
Shields (fine-grained). As such, a pointer acquired within a critical
section is also safe to dereference without protection. Additionally,
it eliminates the need for validation after protecting a pointer with a
Shield if acquired within a critical section because a critical section
prevents any reachable pointers from being HP-Retired.

Figure 4 presents a timeline example where a reclaimer thread𝑇1
and a reader thread 𝑇2 interact with each other under the two-step
retirement. Thread 𝑇1 Retires a pointer 𝑝 while 𝑇2 is in a criti-
cal section. Due to the ongoing critical section, the execution of
HP-Retire is delayed. Concurrently, 𝑇2 protects 𝑝 within its criti-
cal section, without requiring validation. Once 𝑇2 exits its critical
section, HP-Retire may be executed. But the reclamation of 𝑝 is
delayed again because 𝑇2 has a shield protecting 𝑝 . As a result, 𝑇2
can safely dereference 𝑝 even after a critical section concludes. The
pointer 𝑝 is finally reclaimed after 𝑇2 resets the protection.

3.3 Revalidation
We delve into the safety of RCU-expedited traversals. Resuming a
traversal with RCU phase from arbitrary previously protected nodes
may result in a use-after-free error: if a previously protected node
has already been unlinked from the data structure, the next links
might point to reclaimed memory blocks. As such, at the beginning
of the subsequent critical section, a thread must revalidate that
the previously protected node, from which the traversal is to be
resumed, is not retired yet. Recall from §2.1 that the original HP’s
ProtectFrom also imposes the same requirement of ensuring the
source is not retired.

Notably, in lock-free data structures that incorporate the well-
known technique of logical deletion [19, 22, 34, 37], checkingwhether
a node is logically deleted is sufficient for revalidation. This is be-
cause a logical deletion happens before its physical deletion and
retirement. In the earlier example of the Harris-Michael list (Al-
gorithm 3), the original data structure implementation seamlessly
streamlines revalidation (line 24). It is safe because the traversal is
aborted if it (1) observes a logical deletion status of cur, and (2) fails
to resolve its invalid status through physical deletion. Revalidation
for other data structures can be implemented similarly by checking
logical deletion status. We further formalize the safety requirements
for the RCU-expedited traversal in the latter section (§5).

4 HP-BRCU: BOUNDING CRITICAL SECTIONS
We design HP-BRCU by replacing RCU in HP-RCU with BRCU: a
bounded RCU that captures the essence of signal-based rollback
(§4.1); and improve its efficiency with abort-masking (§4.2) and
ease-of-integration with double buffering (§4.3).

Algorithm 5 Bounded RCU (BRCU)
1: struct Local
2: epoch: Atomic<Epoch>

3: thread: RawThread ⊲ used for sending signal
4: global variables
5: EPOCH: Atomic<Epoch>

6: TASKS: ConcurrentQueue<(fn(), Epoch)>

7: LOCALS: ConcurrentList<Local>

8: thread-local variables
9: local: Local*

10: chkpt: Checkpoint

11: status: Atomic<Status> ⊲ Out (default) | InCs
12: tasks: ArrayVec<fn(), MaxLocalTasks> ⊲ fixed-capacity vector
13: push_cnt: Integer

14: function CriticalSection<R: Copy>(body: fn()→ R)→ R

15: Checkpoint(chkpt) ⊲ e.g., sigsetjmp

16: status.store(InCs); local.epoch.store(EPOCH.load()); fence(SC)
17: result← body()
18: local.epoch.store(⊥); status.store(Out)
19: return result

20: function SignalHandler()
21: if status.load() = InCs then Rollback(chkpt) ⊲ e.g., siglongjmp
22: function Defer(task: fn())
23: tasks.push(task)

24: if ¬ tasks.is_full() then return
25: fence(SC); 𝐸𝑔 ← EPOCH.load(); fence(SC)
26: TASKS.push(tasks.pop_all(), 𝐸𝑔) ⊲ push tasks with tagging epoch
27: push_cnt++

28: for other ∈ LOCALS do
29: 𝐸𝑜 ← other.epoch.load()

30: if 𝐸𝑜 ≠ ⊥ && 𝐸𝑜 < 𝐸𝑔 then
31: if push_cnt < ForceThreshold then return
32: SendSignal(other.thread) ⊲ e.g., pthread_kill
33: push_cnt← 0; EPOCH.cas(𝐸𝑔 , 𝐸𝑔 + 1)
34: execute all tasks from TASKS.pop_all_expired_within(𝐸𝑔 − 1)

4.1 Bounded RCU
The BRCU algorithm inherits the concept of signal-based rollback
from prior schemes, especially NBR(+) [48, 49]. Recall from §2.3 that
the objective of signal-based rollback is to immediately abort on-
going critical sections, allowing others to reclaim nodes. However,
prior schemes suffer from performance degradation due to frequent
signals. We introduce BRCU as an optimized solution that sends sig-
nals selectively to slow threads, providing a significant performance
advantage over NBR(+) (see §6 for performance evaluation).

Requirements. BRCU provides nearly the same methods as the
original RCU (§2.2): CriticalSection and Defer. However, the
body of critical sections can now be aborted midway and rolled
back to the beginning upon receiving a signal. In other words, the
body must not execute any transient shared memory writes such
as lock acquisition or logical modification to a data structure.

Formally, we require that the body of the critical section is abort-
rollback-safe. A region (i.e., a sequence of operations) is rollback-
safe [45] if executing it to completion zero or more times does
not affect the operation’s semantics. In addition, a region is abort-
rollback-safe if (1) it is rollback-safe, and (2) aborting it in the middle
does not affect the operation’s semantics or introduce liveness

SPAA 2024, June 17–21, 2024, Nantes, France. Jeonghyeon Kim, Jaehwang Jung, and Jeehoon Kang

problems, such asmemory leak and deadlock. For a notable example,
a read-only traversal is abort-rollback-safe: restarting the traversal
does not compromise the operation’s semantics (i.e., it eventually
reaches the destination again), and aborting it will not alter the
shared memory. However, Defer is not even rollback-safe as it
modifies the global task registry in a rollback-unsafemanner. On the
other hand, the physical deletion during a traversal (e.g., line 26 in
Algorithm 3) is rollback-safe but not abort-rollback-safe: attempting
the same physical deletion again would simply fail, not modifying
the sharedmemory again, but a memory leak occurs if the operation
is aborted between successful deletion and Defering a reclamation.
For another example, a lock acquisition (e.g., accessing the standard
I/O) is also abort-rollback-unsafe, potentially leading to deadlock if
aborted before releasing the lock.

Rollback-safety implies idempotence, but the converse does not
hold because a rollback-safe operation does not alter the shared
memory (modulo helping), while an idempotent operation may do.

Algorithm. BRCU maintains three internal global variables: the
global epoch, the deferred task set, and the list of Local data for par-
ticipating threads, each comprising a local epoch and the system’s
thread object (pthread_t in POSIX). Each thread maintains five
thread-local variables: the pointer to its Local, the rollback check-
point (sigjmp_buf in POSIX), the status flag indicating whether
the thread is in a critical section (InCs), the deferred task set, and
the number of tasks it flushed to the global task sets.

Algorithm 5 implements BRCU. All interaction steps related
to the signal-based rollback policy are highlighted in cyan . The
CriticalSection method (line 14) starts by creating a checkpoint
(line 15) where the execution will resume upon receiving a signal.
It then sets the status to InCs, indicating that the thread is within a
critical section, highlighted in green where the execution can be
aborted and rolled back at any point. Then it sets the local epoch,
executes the given function, resets the epoch and status, and finally
returns the function’s result (which must not involve heap memory
allocation). When a thread receives a signal, the SignalHandler
(line 20) checks if the current thread is in a critical section, and if
so, rolls back to the latest checkpoint (line 15).5

The Defermethod (line 22) accumulates the given task to the lo-
cal batch (line 23), and if full, it migrates the batch to the global task
set after tagging it with the current global epoch (line 26). It then
attempts to advance the global epoch. If all threads inside critical
sections are with the latest epoch, it increments the global epoch
(line 33) without signals. If there are violating threads, it gives up
advancing until the threshold is reached. Once the threshold is
reached, it forcefully advances the global epoch by aborting the vi-
olating threads’ critical sections with signals (line 32). This ensures
the number of the deferred tasks scheduled by a thread in an epoch
does not exceed the constantMaxLocalTasks×ForceThreshold,
whichwill be utilized in provingHP-BRCU’s robustness (§5). Finally,
it executes the old deferred tasks (line 34).

Our implementation utilizes the SIGUSR1 POSIX signal [30], and
assumes that signals are delivered immediately: the signaled thread
is interrupted before the signaling thread returns from the system
call (see the appendix [27] for details), which holds for Linux [26]
5Every access to status should be wrapped with compiler fences
(atomic_signal_fence in C/C++) to prevent instruction reordering.

and FreeBSD [49]. For systems without such a guarantee, we may
further defer the task execution by interacting with the sched-
uler [4].

4.2 Abort-Masking
We designHP-BRCU bymodularly replacing RCUwith BRCU inHP-
RCU. BRCU-expedited traversal ensures robustness against stalled
threads while still preserving all the benefits of RCU-expedited one,
but additionally requiring abort-rollback-safety (§4.1).

Motivation. Generally, a region becomes abort-rollback-unsafe
because it comprises a write operation such as lock acquisition or re-
tirement. For instance, the traversal of the Harris-Michael list in the
original form is abort-rollback-unsafe due to physical deletion (§4.1).
For this reason, such an algorithm is not supported by DEBRA+
and NBR(+). In contrast, it can be implemented with HP-BRCU
across multiple BRCU critical sections as follows: upon observing a
logical deletion of cur, the traversing thread (1) exits the critical
section after protecting prev and cur; (2) unlinks and retires cur;
and then (3) resumes traversal from prev in a new critical section
that revalidates prev. However, this strategy involves overheads
due to revalidations and critical section re-establishments.

Solution. We further overcome this drawback by equipping BRCU
with abort-masked region that transforms a rollback-safe region
into an abort-rollback-safe one. In an abort-masked region, upon re-
ceiving a signal, the thread does not immediately roll back; instead,
it rolls back at the end of the masked region. Deferring the rollback
is similar to running body outside a critical section. As such, body
should be safe to execute without the protection of a critical section,
e.g., the nodes used in an abort-masked region should be protected
in HP shields before entering the region (see §4.3 for example).

It is straightforward to apply the abort-masking to lock-free data
structures. (1) The user should first identify a sub-region within
the traversal that performs write operations (e.g., physical deletion),
and wrap that sub-region with an abort-masked region (e.g., line 24
in Algorithm 8). Here, it is likely that this sub-region is already
rollback-safe thanks to the concurrent nature of the data structure.
Specifically, the data structure must ensure safety during concur-
rent executions, which implies rollback safety. (2) Then the user
must identify the pointers used in the masked region and protect
them with outliving HP shields before entering the region (e.g.,
line 23 in Algorithm 8). This protection step mirrors the protec-
tions implemented upon exiting the critical section (e.g., line 32 in
Algorithm 3).

Algorithm. Algorithm 6 illustratesmodifications for abort-masking,
highlighted in purple . TheMask function (line 8) creates an abort-
masked region executing body that defers the rollback until it
exits. It first sets the thread’s status to InRm, representing an abort-
masked region, and executes the given body. If the thread receives a
signal in this state, SignalHandler sets the status to RbReq indicat-
ing that rollback was requested, and returns to the original context.
ThenMask tries switching the status from InRm back to InCs. This
should be an atomic CAS because it may race with SignalHandler.
If it fails, the status must be in RbReq, so it Rollbacks to the last
checkpoint. Otherwise, it returns the result of body.

Expediting Hazard Pointers with Bounded RCU Critical Sections SPAA 2024, June 17–21, 2024, Nantes, France.

Algorithm 6 Abort-masking for BRCU
1: thread-local variables
2: status: Atomic<Status> ⊲ Out (default) | InCs | InRm | RbReq
3: . . .

4: function SignalHandler()
5: current← status.load()

6: if current = InCs then Rollback(chkpt)
7: if current = InRm then status.store(RbReq)
8: function Mask<R: Copy>(body: fn()→ R)→ R

9: ⊲ Precondition: called from the body of CriticalSection. ⊳

10: status.store(InRm)
11: result← body()

12: if status.cas(InRm, InCs).is_err() then Rollback(chkpt)
13: return result

4.3 Double Buffering
To facilitate the applicability of HP-BRCU, we present a high-level
API called Traverse that enables users to seamlessly integrate
HP-BRCU into the original traversal algorithm.

In contrast to HP-RCU, HP-BRCU maintains robustness against
long-running operations without explicitly exiting the critical sec-
tion after each checkpoint. This is because a lengthy critical section
will be aborted by other threads, obviating the need for explicit
alternation as in Algorithm 3. But still, periodic checkpointing with
HP in critical sections remains essential to prevent starvation under
long-running operations, where a thread never finishes its opera-
tion indefinitely rolling back to the entry point of the data structure.
However, checkpointing becomes more challenging in that strategy
because the protection of multiple pointers may be aborted in the
middle. If the execution is interrupted during checkpointing, the
collection of shields (i.e., protector) falls to an incomplete state (e.g.,
prev_s protects the latest one, while cur_s does not).

We address the illustrated challenge on checkpointing by employ-
ing double buffering [52]: rather than utilizing only one protector
for checkpointing, we now incorporate another one for backup and
dynamically switch between the two at each checkpoint. Then at
least one is protecting a complete collection of pointers even if a
traversal is rolled back during checkpointing. As such, the traversal
can be resumed by starting from the complete protector.

Algorithm 7 presents the Traverse method that makes interme-
diate backup protections from which the traversal can resume. The
entire traversal is conducted within this function with three argu-
ments: (1) prot, the Protector for the ultimately acquired Cursor,
(2) an init closure that creates the initial cursor from the entry point,
and (3) a step closure that traverses the data structure one step from
the given cursor. Protector generalizes a collection of shields (e.g.,
the pair of prev_s and cur_s) to protect the traversal result of type
Cursor (e.g., the pair of prev and cur). The two functions are called
within critical sections so that BRCU’s requirements apply (§3.3 and
§4.1). These requirements can typically be met in most lock-free
data structures because the following links and reading keys are
already abort-rollback-safe and occasional abort-rollback-unsafe
steps can be conducted within masked regions.

The source of the traversal, src, is initialized by protecting the
Cursor returned from init within a critical section (line 12). Then
prots, curs, and the current index of the synchronized pair comp_idx

Algorithm 7 The Traverse API for HP-BRCU
1: trait Validatable ⊲ e.g., a set of dereferenceable pointers.
2: method validate()→ bool

3: trait Protector ⊲ e.g., a set of shields.
4: type Cursor: Validatable + Copy ⊲ a target cursor for this protector.
5: function new()→ Self

6: method protect(cur: &Cursor)

7: enum StepResult<C, R>

8: Finish(C, R), Continue(C), Fail

9: function Traverse<P: Protector, R: Copy>(prot: &P,
init: fn()→ P::Cursor

step: fn(P::Cursor)→ StepResult<P::Cursor, R>

)→ Option<(P::Cursor, R)>

10: extra← Protector::new()

11: src← CriticalSection(𝜆.
12: s← init(); extra.protect(s); return s) ⊲ Initialize the first cursor.

13: prots← [&extra, prot]; curs← [src, ⊥]
14: comp_idx← 0 ⊲ Always points to a complete buffer.
15: result← CriticalSection(𝜆.
16: cur← curs[comp_idx mod 2]

17: if ¬ cur.validate() then return None

18: for i = 1, . . . do
19: s_res← step(cur) ⊲ Advance a step forward.
20: if let Finish(c, _) = s_res | Continue(c) = s_res then cur← c

21: if s_res.is_finish() || i mod BackupPeriod = 0 then
22: prots[(comp_idx + 1) mod 2].protect(cur)

23: curs[(comp_idx + 1) mod 2]← cur

24: comp_idx++ ⊲ The next buffer is now complete.
25: if let Finish(c, r) = s_res then return Some((c, r)))
26: if comp_idx mod 2 = 0 then
27: swap(prots[0], prots[1]) ⊲ Move the latest protection to prot.
28: return result

are initialized (lines 13 and 14). These implement the double buffer-
ing policy and should be declared outside the critical section as
they are shared across multiple executions of the critical section
body. Note that comp_idx always holds the index of pairs that have
complete states so that subsequent critical section can always select
an appropriately protected cursor and resume by validating it.

When the second critical section begins, it first revalidates the
target of the current backup protection (line 17), and upon success,
resumes traversal from that point. This revalidation is done by
calling the user-defined validate method of the Validatable trait.
As such, the revalidation steps are handled automatically by the
Traverse method once the user implements the Validatable trait.
The step function is called repeatedly in a loop protected by a
BRCU critical section (line 19). Following each step, Traverse
determines whether to create a new backup protection (line 21),
by protecting the current cursor using the next protector (line 22).
After successfully creating a checkpoint, it increments comp_idx,
permitting the use of the next protector (line 24). The critical section
concludes when the step function returns a Finish value (line 25).
With the protection in prot and returned value from Finish, the
caller may subsequently perform other higher-level operations, e.g.,
insertion and deletion, by dereferencing the acquired cursor.

SPAA 2024, June 17–21, 2024, Nantes, France. Jeonghyeon Kim, Jaehwang Jung, and Jeehoon Kang

Algorithm 8 Harris-Michael list search with Traverse
1: struct ListCursor : Validatable + Copy

2: prev, cur: Node*

3: method validate()→ bool

4: return (*cur).next.load().tag() = 0

5: struct ListCursorProtector : Protector
6: prev, cur: Shield

7: type Cursor = ListCursor

8: function new()
9: prev = Shield::new(); cur = Shield::new()

10: method protect(cursor: &Cursor)
11: prev.protect(cursor.prev); cur.protect(cursor.cur)

12: thread-local variable
13: prot: ListCursorProtector ⊲ Two shields that protect prev and cur.
14: function TrySearch(key: Key)→ Option<(ListCursor, bool)>

15: (mask_prev_s, mask_cur_s)← (Shield::new(), Shield::new())

16: return Traverse(prot,
17: (𝜆. prev← ENTRY.load(); return { prev, (*prev).next.load() })
18: (𝜆 { prev, cur }. ⊲ step: advances one step.
19: if cur = ⊥ then return Finish({ prev, cur }, false)

20: next← (*cur).next.load()

21: if next.tag() ≠ 0 then
22: next← next.with_tag(0)

23: mask_prev_s.protect(prev); mask_cur_s.protect(cur)

24: succ←Mask(𝜆. ⊲ Abort-unsafe physical deletion
25: match (*prev).next.cas(cur, next)

26: case Ok then Retire(cur); return true

27: case Err then return false)
28: if succ then return Continue({ prev, next })

29: else return Fail

30: if (*cur).key ≥ key then
31: return Finish({ prev, cur }, (*cur).key = key)

32: return Continue({ cur, next })))

Example. Algorithm 8 re-implements the TrySearch function
from the prior example of Harris-Michael list (Algorithm 3) in HP-
BRCU. The interface of TrySearch remains almost the same, addi-
tionally returning the final ListCursor (i.e., prev and cur) (line 14).
The two closure arguments init and step correspond to InitCur-
sor and Steps in Algorithm 3, respectively. In addition, it provides
a validate method (line 3) as a trait Validatable implementation
for the ListCursor. The validation simply checks whether cur, the
pointer to be dereferenced in the step is marked. This method en-
ables Traverse to automatically validate the protected cursor after
rolling back by calling the validate method of the cursor (line 17
in Algorithm 7). With these arguments and trait implementation,
the Traverse function manages the entire traversal and periodic
checkpointing, ultimately returning the acquired and protected
cursor. It fails only if it observes that the cursor is invalidated after
rolling back. In case of failure, the client may need to retry the
traversal by recalling TrySearch, although such failures are rare
in practical workloads.

Additionally, the algorithm demonstrates the usage of themasked
region. It utilizes theMask function to attempt physical deletion
within a critical section (§4.2). This process comprises two parts.

First, it protects the local pointers with outliving shields, high-
lighted in yellow , to use in the masked region.6 Then, it performs
the physical deletion and retirement of the unlinked node within
Mask, highlighted in purple . Although the physical deletion pro-
cedure is abort-rollback-unsafe, it can be executed safely because
the abort-masking guarantees the sequence of unlinking and retire-
ment not to be interrupted midway.

5 ANALYSIS
Safety. We formalize the requirements on the body of the BRCU
phase discussed so far, including revalidation, as follows:
R1 Suppose 𝑝 is a pointer created before the body. After following

a link from 𝑝 to a target node, say 𝑞, it validates that 𝑝 is not
retired yet before dereferencing 𝑞.

R2 Suppose 𝑝 is a pointer created in the body. Then 𝑝 is safe to
dereference or protect (without validation) within the body.

R3 The body runs only abort-rollback-safe operations.
These requirements are essential in proving the safety of HP-BRCU.

Theorem 5.1 (BRCU’s Correctness). Suppose that a task is
scheduled and defer-executed. We say these events are 𝑒𝑠 and 𝑒𝑥 ,
respectively. Then for every critical section, whose start and end events

are 𝑒𝑓 and 𝑒𝑡 , we have either 𝑒𝑠
hb→ 𝑒𝑓 or 𝑒𝑡

hb→ 𝑒𝑥 .

Here, we assume C/C++ relaxed memory model and
hb→ is happens-

before relation. The theorem means that a task scheduled concur-

rently with a critical section (𝑒𝑠
hb
↛ 𝑒𝑓) is always deferred until its

end (𝑒𝑡
hb→ 𝑒𝑥). The statement is the same as the original RCU’s

correctness [33] but it additionally considers rollbacks.

Theorem 5.2 (HP-BRCU’s Safety). Suppose a data structure
meets the original HP’s requirements and HP-BRCU’s requirements
R1, R2, R3. Then it does not incur use-after-free.

The proofs formalize the key idea presented in §3 and §4, and the
correctness of the original HP [35, 36] (see the appendix [27] for
proofs).

Applicability. Table 1 summarizes the applicability of reclamation
schemes to various data structures. HP-BRCU is strictly more appli-
cable than the original HP because the requirement for revalidation
(§3.3) is more lenient than the original HP’s. In particular, it supports
optimistic traversal (§2.1): once the source is validated, then the
traversal from it is protected in the critical section even if the inter-
mediate nodes get deleted while traversal. Furthermore, HP-BRCU
surpasses DEBRA+ and NBR(+) in applicability thanks to resuming
after revalidation (§3.3). Specifically, resuming enables a traversal
with a critical section to start from arbitrary nodes, making HP-
BRCU applicable to data structures involving abort-rollback-unsafe
physical deletion during traversals. In our evaluation, HP-BRCU ap-
plies to the same set of data structures as VBR [45], HP++ [24], and
PEBR [25]. They all share the same strategy of aborting ongoing
operations, either by signal or by flag, and restarting the aborted
operations. Consequently, they apply to a data structure as long as
its operations can be recovered from abortion.
6Although cur is not dereferenced during a physical deletion, the protection is neces-
sary to prevent an ABA problem.

Expediting Hazard Pointers with Bounded RCU Critical Sections SPAA 2024, June 17–21, 2024, Nantes, France.

Data structure
HP,
HE,
IBR

DEBRA+ NBR RCU

HP-RCU,
HP-BRCU,
VBR, HP++,

PEBR
linked list [21] ✗ ✗ ▲ ✓ ▲

linked list [19] ✗ * ✓ ✓ ✓

linked list [34] ✓ * ✗ ✓ ✓

partially ext. BST [14] ✗ ✗ ** ✓ ✓

ext. BST [16] ✓ * ✓ ✓ ✓

ext. BST [37] ✗ * ✓ ✓ ✓

ext. BST [15] ✓ * ✗ ✓ ✓

ext. BST [10] ✗ ✗ ▲ ✓ ▲

int. BST [23] ✗ * ✓ ✓ ✓

int. BST [42] ✗ ✗ ✗ ✓ ✓

partially ext. AVL [3] ✓ ✗ ✗ ✓ ✓

partially ext. AVL [14] ✗ ✗ ✗ ✓ ✓

ext. relaxed AVL [20] ✗ ✓ ✓ ✓ ✓

ext. AVL [5] ✗ ✓ ✓ ✓ ✓

patricia trie [44] ✗ * ▲ ✓ ▲

ext. chromatic tree [6] ✗ ✓ ✓ ✓ ✓

ext. (a,b)-tree [5] ✗ ✓ ✓ ✓ ✓

ext. interpol. tree [7] ✗ ✗ ✗ ✓ ▲

skip list [22] ▲ ✗ ✗ ✓ ▲

Table 1: Applicability of reclamation schemes. ✓: supported.
✗: not supported. ▲: supported but wait-freedom not preserved
(§5). *: requiring significant design effort for recovery. **: requiring
code restructuring to satisfy the scheme’s assumption.

The ERA theorem [46] posits that every robust and applicable
scheme is inherently not easy to integrate. The same holds for HP-
BRCU as it necessitates consideration for an operation restart due
to revalidation failures. However, we want to emphasize that its
impact on programmability and performance is limited because an
operation restart is already considered in the majority of concur-
rent data structures we are aware of, particularly to handle cases
where an operation fails to perform CAS at the linearization point.
Moreover, for programmability, we provide a high-level Traverse
function (§4.3) that does not require users to explicitly consider
inter-critical-section HP protection. In terms of performance, reval-
idation failures are much less likely than the original HP because
most traversals are performed inside BRCU.

Analysis. Our partial solution HP-RCU is already robust against
non-preempted long-running operations, provided that their RCU
phases have a bounded number of instructions. However, it is not
yet robust against stalled threads (§2.2). Even though a long tra-
versal is divided into multiple RCU phases, a thread can be stalled
within an RCU phase, blocking the reclamation process.

On the other hand, HP-BRCU is robust against stalled threads
as well, as both of its components HP and BRCU are robust. For-
mally, HP-BRCU bounds the number of retired and yet unreclaimed
garbage objects by 2𝐺𝑁 +𝐺𝑁 2 +𝐻 , where𝐺 = MaxLocalTasks×
ForceThreshold, 𝑁 is the number of threads, and𝐻 is the number
of shields. Recall from §4.1 that the number of the deferred tasks
scheduled by a thread in an epoch is bounded by𝐺 . The first term is
the garbages (𝐺) put in the two old BRCU epochs (2) by the threads
(𝑁), the second term is the garbages (𝐺) put in the same BRCU

epoch retired by all threads (𝑁) being reclaimed by each thread (𝑁),
and the third term is the explicitly HP-protected nodes (𝐻). While
the second term is quadratic on the number of threads, it is unlikely
to reach the bound in practice as it happens only in a pessimistic
case that every thread is reclaiming nodes at the same time (see §6).

Progress Guarantee. HP-BRCU preserves the lock-freedom of con-
current data structures despite its use of BRCU that possibly hinders
the progress. However, HP-BRCU does not preserve wait-freedom,
e.g., it makes Heller et al. [21], Herlihy and Shavit [22]’s wait-free
search just lock-free as traversal may be rollbacked indefinitely.

Theorem 5.3 (Lock-Freedom Preservation). Suppose a lock-
free data structure traverses and reclaims nodes using HP-BRCUmeth-
ods, and its operations allocate a bounded number of nodes. Then the
resulting data structure is also lock-free.

Proof. Suppose otherwise and there exists an infinite execu-
tion history of a data structure equipped with HP-BRCU where no
operations are finished successfully after some timestamp, say 𝑡0.

We first prove the finiteness of forced global epoch advancements
(line 32 in Algorithm 5) after 𝑡0. Suppose otherwise. Since each
forced advancement is performed by a thread with MaxTasks ×
ForceThreshold garbages (line 31) and puts at least these garbages
to an old epoch, the forced advancements collectively put an infinite
garbage to an old epoch. It is possible only if there are an infinite
number of allocations after 𝑡0. But it contradicts the assumption
that each operation allocates a bounded number of nodes, and thus
the whole program allocates a bounded number of nodes.

Let 𝑡1 > 𝑡0 be a timestamp after all rollbacks. By the lock-freedom
of the underlying data structure, at least one operation should
finish successfully after 𝑡1, contradicting the assumption that no
operations are finished after 𝑡0. □

6 EXPERIMENT
We implemented our technique as a Rust library and evaluated
it on a suite of synthetic benchmarks.7 The benchmark suite in-
cludes the following reclamation schemes: NR: baseline that does
not reclaim memory; RCU: epoch-based RCU [18, 19]; HP: haz-
ard pointers [35, 36] with asymmetric fence optimization [12, 13];
HP++: extension of HP for optimistic traversal [24]; PEBR: pointer-
and epoch-based reclamation [25]; NBR: optimized neutralization-
based reclamation (NBR+) [48]; NBR-Large: NBR+ with a high
reclamation threshold; VBR: version-based reclamation [45]; HP-
RCU: our partial solution with RCU-expedited traversal (§3); and
HP-BRCU: our full solution with RRCU-expedited traversal (§4).

The implementation of HP-RCU and HP-BRCU try advancing
the global epoch per 128 Retires, and HP-BRCU forces advancing it
after two successive unsuccessful advancements. For a fair compar-
ison, other schemes except for NBR-Large also trigger reclamation
per 128 retirements and per 8,192 retirements for NBR-Large8. We
implemented NBR and VBR on our own because there is no pub-
lic implementation in Rust, and used public implementation of
HP/HP++ [24], PEBR [25], and epoch-based RCU [11].

7Available at the project website [27].
8The original author’s implementation [47] triggers reclamation per 32,768 retirements.
However, we found that our configuration performs better in our benchmark.

SPAA 2024, June 17–21, 2024, Nantes, France. Jeonghyeon Kim, Jaehwang Jung, and Jeehoon Kang

The benchmark suite consists of the following data structures:
HList: Harris’s list [19]; HMList: Harris-Michael list [34]; HH-
SList: Harris’s list [19] with wait-free get() [22]9;HashMap: chain-
ing hash table using HMList (for HP) or HHSList (for others) for
each bucket [34]; SkipList: lock-free skip list [22] with wait-free
get() for schemes other than HP; and NMTree: Natarajan-Mittal
tree [37]. We implemented data structures for applicable schemes
only, e.g., we did not implement HMList and SkipList for NBR.

The benchmark was compiled with Rust nightly-2023-12-19
with default optimization and link-time optimization. We used je-
malloc [17] to reduce contention on the memory allocator. We
conducted experiments on two dedicated machines: AMD64T:
single-socket AMD EPYC 7543 (2.8GHz, 32 cores, 64 threads) with
eight 32GiB DDR4 DRAMs (256GiB in total), and INTEL96T: dual-
sockets Intel Xeon Gold 6248R (3.0GHz, 48 cores, 96 threads) with
twelve 32GiB DDR4 DRAMs (384GiB in total). The machines run
Ubuntu 22.04 and Linux 5.15 with the default configuration. All ma-
chines exhibit similar results, so we discuss only those for AMD64T.
For the full experimental results, see the appendix [27].

Methodology. We measured throughput (operations per second)
and the peak number of retired yet unreclaimed objects for (1) vary-
ing number of threads: 1, 8, 16, 24, · · · , 128 (twice the number of
hardware threads); (2) four types of workloads: read-only (100%
reads), read-intensive (90% reads and 10% writes), read-write (50%
reads and 50% writes) and write-only (50% inserts and 50% deletes);
and (3) fixed time: 10 seconds. For map data structures, each thread
repeatedly calls get(), insert(), and remove()methods randomly. The
key ranges for lists are 1K and 10K, and the key ranges for others
are 100K and 100M. The data structures are pre-filled to 50%. Figure
5 and 7 show representative results from this map benchmark.

We evaluate the performance of long-running operations under
heavy reclamation by measuring the throughput of read operations
of lists (HMList for HP and HHSList for others) with big key ranges:
218, 219, · · · , 229. Specifically, 32 threads perform get() for random
elements, and the other 32 threads push and pop to the head of the
list. Figure 6 shows representative results from this long-running
operation benchmark.

Short-running operations. We observe that HP-BRCU has a per-
formance advantage over other robust schemes thanks to (1) no
per-node overhead in BRCU-expedited traversal, (2) optimistic tra-
versal, and (3) amortized cost of expensive signals.

Figure 5 presents the throughput of read-only workloads. The
thread oversubscription ranges are highlighted in red . For HH-
SList (Figure 5a), HP-BRCU performs comparably with RCU and
NBR, outperforming HP++, PEBR, and VBR with per-node over-
head of protection and/or validation. For HashMap (Figure 5b) with
a generally short traversal length of 1.7. HP and HP++ (without
per-operation cost) outperform RCU (with epoch management),
NBR (with signal management) and HP-BRCU (with both).

Figure 7 presents the throughput of workloads involving write
operations. In general, HP-BRCU performs comparably to (outper-
formed by 5% in the worst case) or outperforms RCU. For HList
(Figure 7a), the gap among all schemes reduces compared to the

9For HP-BRCU, VBR, HP++, PEBR, and NBR, get() is only lock-free due to roll-
back/recovery. The same applies to SkipList.

read-only workloads due to the heavy overhead of write and recla-
mation. However, NBR shows performance degradation after reach-
ing 56 threads due to frequent neutralization signals. For HashMap
and NMTree (Figure 7b and 7c), VBR takes the lead over EBR and
HP-BRCU. VBR benefits significantly from its customized memory
allocator, which does not return memory blocks to the operating
system. Conversely, the performance decline of NBR worsens, and
NBR-Large also demonstrates lower performance than others. For
SkipList (Figure 7d), HP, HP++, and PEBR’s performance is de-
graded due to the protection of multiple local pointers. In contrast,
HP-BRCU minimizes protection overheads by protecting pointers
only once at the end of a critical section. VBR also underperforms
in SkipList due to the overhead of double-word atomic pointers.

Across Figure 7a–7d, HP-BRCU effectively bounds the number
of unreclaimed nodes, showing a memory footprint comparable to
HP and HP++. The numbers are well below the theoretical bound
(§5) because its quadratic term happens only for pessimistic cases.

Long-running operations. Figure 6 compares the NR-normalized
throughput of long-running read operations with varying key
ranges. For large key ranges, NBR, VBR, and PEBR severely suf-
fer from frequent operation restarts as their rollback condition
is coarse-grained. In contrast, HP-RCU maintains both consistent
throughput and moderate memory footprint by splitting the long
operation into short RCU phases. Furthermore, HP-BRCU achieves
consistent and bounded memory usage by rolling back stalled
threads while preserving its high throughput.

7 RELATEDWORK
Table 2 summarizes the robustness and efficiency of various recla-
mation schemes. Only HP-BRCU is robust and efficient for long-
running operations at the same time. For instance, RCU [31, 32]
and Stamp-it [40] are efficient but not robust because the length of
a critical section is unbounded. IBR [50] is not robust against long-
running operations, as a thread may occupy an indefinite range
of epochs. PEBR [25], VBR [45], DEBRA+ [8] and NBR(+) [48, 49]
bound their memory footprints, but they starve in long-running
operations due to their coarse-grained rollback conditions (§2.3).
On the other hand, HP [35, 36], HP++ [24], and HE [43] are ro-
bust against long-running operations, thanks to their fine-grained
rollback conditions (i.e., validation based on the state of individual
nodes). However, they suffer from per-node overheads and HP and
HE are not widely applicable (§5). HP-BRCU strikes a balance in
this tradeoff: (1) its rollback condition is fine-grained because an
operation is validated by checkpointed nodes, and (2) it avoids
per-node overheads through BRCU-expedited traversals.

There are several variants of HP that partially overcome HP’s
drawbackswhile retaining robustness. IBR [50], HE [43], andHyaline-
1S [38] improve efficiency by validating protections with epoch,
which requires fewer fences. However, they do not support opti-
mistic traversal in general. PEBR [25] and HP++ [24] support opti-
mistic traversal. To do so, PEBR employs an ejection synchronization
protocol between traversing and reclaiming threads, which may
degrade the performance of long-running operations, and HP++
lets the retiring threads issue additional protections on behalf of
traversing threads. All HP variants inherit the inefficiency due to
per-node protection overhead.

Expediting Hazard Pointers with Bounded RCU Critical Sections SPAA 2024, June 17–21, 2024, Nantes, France.

NR RCU HP HP++ HP-RCU HP-BRCU PEBR NBR NBR-Large VBR

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

50

100

150

200

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HHSList

(a) HHSList. 1K.
1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

100

200

300

400

500

600

700

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HashMap

(b) HashMap. 100K.

Figure 5: Throughput of read-only workloads for varying num-
ber of threads.

218 219 220 221 222 223 224 225 226 227 228 229

Key range

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Th
ro

ug
hp

ut
 ra

tio
 to

 N
R

(a) Throughput

218 219 220 221 222 223 224 225 226 227 228 229

Key range
0

5

10

15

20

25

30

35

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0³

)

(b) Peak # of unrecl. blocks

Figure 6: Throughput and peak number of unreclaimed blocks
of long-running read operations.

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HList/HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

1

2

3

4

5

6

7

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

HList/HHSList

(a) HList. 1K. Write-only workloads.
1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

25

50

75

100

125

150

175

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

HashMap

(b) HashMap. 100K. Write-only workloads.

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

20

40

60

80

100

Th
ro

ug
hp

ut
 (M

 o
p/

s)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

NMTree

(c) NMTree. 100K. Read-write workloads.

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

20

40

60

80

Th
ro

ug
hp

ut
 (M

 o
p/

s)

SkipList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

2

4

6

8

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

SkipList

(d) SkipList. 100K. Read-write workloads.

Figure 7: Throughput (million operations per second) and peak number of unreclaimed blocks for a varying number of threads.

criterion RCU HP, HP++ HE PEBR VBR IBR DEBRA+, NBR(+) HP-RCU HP-BRCU

robustness stalled threads ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓

long-running ops. ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓

efficiency low per-node overhead ✓ ✗ ▲ ✗ ▲ ▲ ✓ ✓ ✓

starvation-freedom
in long-running ops. ✓ ▲ ▲ ✗ ✗ ▲ ✗ ▲ ▲

Table 2: Comparing the robustness and efficiency of various reclamation schemes. low per-node cost: ✓: none. ▲: usually validation
only. ✗: protection and validation; starvation-freedom in long-running ops.: ✓: no starvation. ▲: less starvation (fine-grained failure). ✗: more
starvation (coarse-grained failure).

ACKNOWLEDGMENTS
We thank the anonymous reviewers of PPoPP’24 and SPAA’24 for
their in-depth feedback. We also thank Janggun Lee for actively
providing insightful feedback throughout the project. This work
was supported by: (1) Institute for Information & Communications
Technology Planning & Evaluation (IITP) grant funded by the Korea
government (MSIT) partly under the project (No. RS-2024-00396013,
DRAM PIM Hardware Architecture for LLM Inference Processing
with Efficient MemoryManagement and Parallelization Techniques,

70%), partly under the Information Technology Research Center
(ITRC) support program (No. IITP-2024-2020-0-01795, Development
of Dependable and Highly Usable Big Data Platform, and Analy-
sis and Prediction Services Technology in Edge Clouds, 10%), and
partly under the Graduate School of Artificial Intelligence Semi-
conductor (No. IITP-2024-RS-2023-00256472, 10%); and (2) Basic
Science Research Program through the National Research Foun-
dation of Korea (NRF) funded by the Ministry of Education (No.
RS-2024-00397386, 10%).

SPAA 2024, June 17–21, 2024, Nantes, France. Jeonghyeon Kim, Jaehwang Jung, and Jeehoon Kang

REFERENCES
[1] Dan Alistarh, William Leiserson, Alexander Matveev, and Nir Shavit. 2017.

Forkscan: Conservative Memory Reclamation for Modern Operating Systems. In
Proceedings of the Twelfth European Conference on Computer Systems (Belgrade,
Serbia) (EuroSys ’17). Association for Computing Machinery, New York, NY, USA,
483–498. https://doi.org/10.1145/3064176.3064214

[2] Dan Alistarh, William Leiserson, Alexander Matveev, and Nir Shavit. 2018.
ThreadScan: Automatic and Scalable Memory Reclamation. ACM Trans. Parallel
Comput. 4, 4, Article 18 (may 2018), 18 pages. https://doi.org/10.1145/3201897

[3] Nathan G. Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun. 2010. A
Practical Concurrent Binary Search Tree. In Proceedings of the 15th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (Bangalore, India)
(PPoPP ’10). Association for Computing Machinery, New York, NY, USA, 257–268.
https://doi.org/10.1145/1693453.1693488

[4] Trevor Brown. 2017. Reclaiming memory for lock-free data structures: there
has to be a better way. CoRR abs/1712.01044 (2017). arXiv:1712.01044 http:
//arxiv.org/abs/1712.01044

[5] Trevor Brown. 2017. Techniques for Constructing Efficient Lock-free Data Struc-
tures. https://doi.org/10.48550/ARXIV.1712.05406

[6] Trevor Brown, Faith Ellen, and Eric Ruppert. 2014. A General Technique for
Non-Blocking Trees. SIGPLAN Not. 49, 8 (feb 2014), 329–342. https://doi.org/10.
1145/2692916.2555267

[7] Trevor Brown, Aleksandar Prokopec, and Dan Alistarh. 2020. Non-Blocking Inter-
polation Search Trees with Doubly-Logarithmic Running Time. In Proceedings of
the 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming (San Diego, California) (PPoPP ’20). Association for Computing Machinery,
New York, NY, USA, 276–291. https://doi.org/10.1145/3332466.3374542

[8] Trevor Alexander Brown. 2015. Reclaiming Memory for Lock-Free Data Struc-
tures: There Has to Be a Better Way. In Proceedings of the 2015 ACM Sympo-
sium on Principles of Distributed Computing (Donostia-San Sebastián, Spain)
(PODC ’15). Association for Computing Machinery, New York, NY, USA, 261–270.
https://doi.org/10.1145/2767386.2767436

[9] E.F. Codd, S.B. Codd, and C.T. Salley. 1993. Providing OLAP (On-line Analytical
Processing) to User-analysts: An IT Mandate. Codd & Associates.

[10] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. 2015. Asynchro-
nized Concurrency: The Secret to Scaling Concurrent Search Data Structures.
In Proceedings of the Twentieth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (Istanbul, Turkey) (ASP-
LOS ’15). Association for Computing Machinery, New York, NY, USA, 631–644.
https://doi.org/10.1145/2694344.2694359

[11] Crossbeam Developers. 2023. Crossbeam. https://github.com/crossbeam-rs/
crossbeam

[12] Dave Dice, Maurice Herlihy, and Alex Kogan. 2016. Fast Non-Intrusive Memory
Reclamation for Highly-Concurrent Data Structures. In Proceedings of the 2016
ACM SIGPLAN International Symposium on Memory Management (Santa Barbara,
CA, USA) (ISMM 2016). Association for Computing Machinery, New York, NY,
USA, 36–45. https://doi.org/10.1145/2926697.2926699

[13] Dave Dice, Hui Huang, and Mingyao Yang. 2001. Asymmetric Dekker Synchro-
nization. http://web.archive.org/web/20080220051535/http://blogs.sun.com/
dave/resource/Asymmetric-Dekker-Synchronization.txt

[14] Dana Drachsler, Martin Vechev, and Eran Yahav. 2014. Practical Concurrent
Binary Search Trees via Logical Ordering. SIGPLAN Not. 49, 8 (feb 2014), 343–356.
https://doi.org/10.1145/2692916.2555269

[15] Faith Ellen, Panagiota Fatourou, Joanna Helga, and Eric Ruppert. 2014. The
Amortized Complexity of Non-Blocking Binary Search Trees. In Proceedings of
the 2014 ACM Symposium on Principles of Distributed Computing (Paris, France)
(PODC ’14). Association for Computing Machinery, New York, NY, USA, 332–340.
https://doi.org/10.1145/2611462.2611486

[16] Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel. 2010.
Non-Blocking Binary Search Trees. In Proceedings of the 29th ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing (Zurich, Switzerland)
(PODC ’10). Association for Computing Machinery, New York, NY, USA, 131–140.
https://doi.org/10.1145/1835698.1835736

[17] Jason Evans. 2006. A scalable concurrent malloc (3) implementation for FreeBSD.
[18] Keir Fraser. 2004. Practical lock-freedom. Ph. D. Dissertation.
[19] Timothy L. Harris. 2001. A Pragmatic Implementation of Non-Blocking Linked-

Lists. In Proceedings of the 15th International Conference on Distributed Computing
(DISC ’01). Springer-Verlag, Berlin, Heidelberg, 300–314.

[20] Meng He and Mengdu Li. 2017. Deletion without Rebalancing in Non-Blocking
Binary Search Trees. In 20th International Conference on Principles of Distributed
Systems (OPODIS 2016) (Leibniz International Proceedings in Informatics (LIPIcs),
Vol. 70), Panagiota Fatourou, Ernesto Jiménez, and Fernando Pedone (Eds.).
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 34:1–
34:17. https://doi.org/10.4230/LIPIcs.OPODIS.2016.34

[21] Steve Heller, Maurice Herlihy, Victor Luchangco, Mark Moir, William N. Scherer,
and Nir Shavit. 2006. A Lazy Concurrent List-Based Set Algorithm. In Princi-
ples of Distributed Systems, James H. Anderson, Giuseppe Prencipe, and Roger
Wattenhofer (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 3–16.

[22] Maurice Herlihy and Nir Shavit. 2012. The Art of Multiprocessor Programming,
Revised Reprint (1st ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA.

[23] Shane V. Howley and Jeremy Jones. 2012. A Non-Blocking Internal Binary
Search Tree. In Proceedings of the Twenty-Fourth Annual ACM Symposium on
Parallelism in Algorithms andArchitectures (Pittsburgh, Pennsylvania, USA) (SPAA
’12). Association for Computing Machinery, New York, NY, USA, 161–171. https:
//doi.org/10.1145/2312005.2312036

[24] Jaehwang Jung, Janggun Lee, Jeonghyeon Kim, and Jeehoon Kang. 2023. Applying
Hazard Pointers to More Concurrent Data Structures. In Proceedings of the 35th
ACM Symposium on Parallelism in Algorithms and Architectures (Orlando, FL,
USA) (SPAA ’23). Association for Computing Machinery, New York, NY, USA,
213–226. https://doi.org/10.1145/3558481.3591102

[25] Jeehoon Kang and Jaehwang Jung. 2020. A Marriage of Pointer- and Epoch-Based
Reclamation. In Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation (London, UK) (PLDI 2020). Association for
Computing Machinery, New York, NY, USA, 314–328. https://doi.org/10.1145/
3385412.3385978

[26] Michael Kerrisk. 2010. The Linux Programming Interface: A Linux and UNIX
System Programming Handbook (1st ed.). No Starch Press, USA.

[27] Jeonghyeon Kim, Jaehwang Jung, and Jeehoon Kang. 2024. Expediting Hazard
Pointers with Bounded RCU Critical Sections. https://cp.kaist.ac.kr/gc

[28] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer.
2017. Repairing Sequential Consistency in C/C++11. In Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(Barcelona, Spain) (PLDI 2017). Association for Computing Machinery, New York,
NY, USA, 618–632. https://doi.org/10.1145/3062341.3062352

[29] Linux Programmer’s Manual. 2023. pthread_kill(3) — Linux manual page. https:
//man7.org/linux/man-pages/man3/pthread_kill.3.html

[30] Linux Programmer’s Manual. 2023. signal(7) — Linux manual page. https:
//man7.org/linux/man-pages/man7/signal.7.html

[31] Paul E. McKenney. 2004. Exploiting Deferred Destruction: An Analysis of Read-
Copy-Update Techniques in Operating System Kernels. Ph. D. Dissertation. OGI
School of Science and Engineering at Oregon Health and Sciences University.

[32] P. E. McKenney and J. D. Slingwine. 1998. Read-copy update: Using execution
history to solve concurrency problems. In PDCS ’98.

[33] Paul E. McKenney, Michael Wong, Maged M. Michael, Geoffrey Romer, Andrew
Hunter, Arthur O’Dwyer, Daisy Hollman, JF Bastien, Hans Boehm, David Gold-
blatt, Frank Birbacher, Erik Rigtorp, Tomasz Kamiński, and Jens Maurer. 2023.
P2545R4: Read-Copy Update (RCU). https://wg21.link/p2545r4.

[34] Maged M. Michael. 2002. High Performance Dynamic Lock-Free Hash Tables
and List-Based Sets. In Proceedings of the Fourteenth Annual ACM Symposium
on Parallel Algorithms and Architectures (Winnipeg, Manitoba, Canada) (SPAA
’02). Association for Computing Machinery, New York, NY, USA, 73–82. https:
//doi.org/10.1145/564870.564881

[35] Maged M. Michael. 2002. Safe Memory Reclamation for Dynamic Lock-Free
Objects Using Atomic Reads andWrites. In Proceedings of the Twenty-First Annual
Symposium on Principles of Distributed Computing (Monterey, California) (PODC
’02). Association for Computing Machinery, New York, NY, USA, 21–30. https:
//doi.org/10.1145/571825.571829

[36] Maged M. Michael. 2004. Hazard Pointers: Safe Memory Reclamation for Lock-
Free Objects. IEEE Trans. Parallel Distrib. Syst. 15, 6 (June 2004), 491–504. https:
//doi.org/10.1109/TPDS.2004.8

[37] Aravind Natarajan and Neeraj Mittal. 2014. Fast Concurrent Lock-Free Bi-
nary Search Trees. In Proceedings of the 19th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (Orlando, Florida, USA) (PPoPP
’14). Association for Computing Machinery, New York, NY, USA, 317–328.
https://doi.org/10.1145/2555243.2555256

[38] Ruslan Nikolaev and Binoy Ravindran. 2021. Snapshot-Free, Transparent, and
Robust Memory Reclamation for Lock-Free Data Structures. In Proceedings of the
42nd ACM SIGPLAN International Conference on Programming Language Design
and Implementation (Virtual, Canada) (PLDI 2021). Association for Computing
Machinery, New York, NY, USA, 987–1002. https://doi.org/10.1145/3453483.
3454090

[39] Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. A Better x86 Memory
Model: x86-TSO. In Theorem Proving in Higher Order Logics, Stefan Berghofer,
Tobias Nipkow, Christian Urban, and Makarius Wenzel (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 391–407.

[40] Manuel Pöter and Jesper Larsson Träff. 2018. Brief Announcement: Stamp-
it, a more Thread-efficient, Concurrent Memory Reclamation Scheme in the
C++ Memory Model. In Proceedings of the 30th on Symposium on Parallelism
in Algorithms and Architectures (Vienna, Austria) (SPAA ’18). Association for
Computing Machinery, New York, NY, USA, 355–358. https://doi.org/10.1145/
3210377.3210661

[41] Christopher Pulte, Jean Pichon-Pharabod, Jeehoon Kang, Sung-Hwan Lee, and
Chung-Kil Hur. 2019. Promising-ARM/RISC-V: A Simpler and Faster Operational
Concurrency Model. In Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation (Phoenix, AZ, USA) (PLDI

https://doi.org/10.1145/3064176.3064214
https://doi.org/10.1145/3201897
https://doi.org/10.1145/1693453.1693488
https://arxiv.org/abs/1712.01044
http://arxiv.org/abs/1712.01044
http://arxiv.org/abs/1712.01044
https://doi.org/10.48550/ARXIV.1712.05406
https://doi.org/10.1145/2692916.2555267
https://doi.org/10.1145/2692916.2555267
https://doi.org/10.1145/3332466.3374542
https://doi.org/10.1145/2767386.2767436
https://doi.org/10.1145/2694344.2694359
https://github.com/crossbeam-rs/crossbeam
https://github.com/crossbeam-rs/crossbeam
https://doi.org/10.1145/2926697.2926699
http://web.archive.org/web/20080220051535/http://blogs.sun.com/dave/resource/Asymmetric-Dekker-Synchronization.txt
http://web.archive.org/web/20080220051535/http://blogs.sun.com/dave/resource/Asymmetric-Dekker-Synchronization.txt
https://doi.org/10.1145/2692916.2555269
https://doi.org/10.1145/2611462.2611486
https://doi.org/10.1145/1835698.1835736
https://doi.org/10.4230/LIPIcs.OPODIS.2016.34
https://doi.org/10.1145/2312005.2312036
https://doi.org/10.1145/2312005.2312036
https://doi.org/10.1145/3558481.3591102
https://doi.org/10.1145/3385412.3385978
https://doi.org/10.1145/3385412.3385978
https://cp.kaist.ac.kr/gc
https://doi.org/10.1145/3062341.3062352
https://man7.org/linux/man-pages/man3/pthread_kill.3.html
https://man7.org/linux/man-pages/man3/pthread_kill.3.html
https://man7.org/linux/man-pages/man7/signal.7.html
https://man7.org/linux/man-pages/man7/signal.7.html
https://wg21.link/p2545r4
https://doi.org/10.1145/564870.564881
https://doi.org/10.1145/564870.564881
https://doi.org/10.1145/571825.571829
https://doi.org/10.1145/571825.571829
https://doi.org/10.1109/TPDS.2004.8
https://doi.org/10.1109/TPDS.2004.8
https://doi.org/10.1145/2555243.2555256
https://doi.org/10.1145/3453483.3454090
https://doi.org/10.1145/3453483.3454090
https://doi.org/10.1145/3210377.3210661
https://doi.org/10.1145/3210377.3210661

Expediting Hazard Pointers with Bounded RCU Critical Sections SPAA 2024, June 17–21, 2024, Nantes, France.

2019). Association for Computing Machinery, New York, NY, USA, 1–15. https:
//doi.org/10.1145/3314221.3314624

[42] Arunmoezhi Ramachandran and Neeraj Mittal. 2015. A Fast Lock-Free In-
ternal Binary Search Tree. In Proceedings of the 16th International Conference
on Distributed Computing and Networking (Goa, India) (ICDCN ’15). Associ-
ation for Computing Machinery, New York, NY, USA, Article 37, 10 pages.
https://doi.org/10.1145/2684464.2684472

[43] Pedro Ramalhete and Andreia Correia. 2017. Brief Announcement: Hazard Eras -
Non-Blocking Memory Reclamation. In SPAA 2017.

[44] Niloufar Shafiei. 2019. Non-Blocking Patricia Tries with Replace Operations.
Distrib. Comput. 32, 5 (oct 2019), 423–442. https://doi.org/10.1007/s00446-019-
00347-1

[45] Gali Sheffi, Maurice Herlihy, and Erez Petrank. 2021. VBR: Version Based Recla-
mation. In Proceedings of the 33rd ACM Symposium on Parallelism in Algorithms
and Architectures (Virtual Event, USA) (SPAA ’21). Association for Computing Ma-
chinery, New York, NY, USA, 443–445. https://doi.org/10.1145/3409964.3461817

[46] Gali Sheffi and Erez Petrank. 2023. The ERA Theorem for Safe Memory Recla-
mation. In Proceedings of the 2023 ACM Symposium on Principles of Distributed
Computing (Orlando, FL, USA) (PODC ’23). Association for ComputingMachinery,
New York, NY, USA, 102–112. https://doi.org/10.1145/3583668.3594564

[47] Ajay Singh. 2023. Simple, Fast and Widely Applicable Concurrent Memory
Reclamation via Neutralization. IEEE Transactions on Parallel and Distributes
Systems (Nov. 2023). https://doi.org/10.5281/zenodo.10203082

[48] Ajay Singh, Trevor Brown, and Ali Mashtizadeh. 2021. NBR: Neutralization
Based Reclamation. In Proceedings of the 26th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (Virtual Event, Republic of Korea)
(PPoPP ’21). Association for Computing Machinery, New York, NY, USA, 175–190.
https://doi.org/10.1145/3437801.3441625

[49] Ajay Singh, Trevor Alexander Brown, and Ali José Mashtizadeh. 2024. Simple,
Fast and Widely Applicable Concurrent Memory Reclamation via Neutralization.
IEEE Transactions on Parallel and Distributed Systems 35, 2 (2024), 203–220. https:
//doi.org/10.1109/TPDS.2023.3335671

[50] Haosen Wen, Joseph Izraelevitz, Wentao Cai, H. Alan Beadle, and Michael L.
Scott. 2018. Interval-based memory reclamation. In PPoPP 2018.

[51] Wikipedia contributors. 2023. ABA problem — Wikipedia, The Free Ency-
clopedia. https://en.wikipedia.org/w/index.php?title=ABA_problem&oldid=
1166964304. [Online; accessed 4-August-2023].

[52] Wikipedia contributors. 2023. Multiple buffering — Wikipedia, The Free Ency-
clopedia. https://en.wikipedia.org/w/index.php?title=Multiple_buffering&oldid=
1164687618. [Online; accessed 4-August-2023].

https://doi.org/10.1145/3314221.3314624
https://doi.org/10.1145/3314221.3314624
https://doi.org/10.1145/2684464.2684472
https://doi.org/10.1007/s00446-019-00347-1
https://doi.org/10.1007/s00446-019-00347-1
https://doi.org/10.1145/3409964.3461817
https://doi.org/10.1145/3583668.3594564
https://doi.org/10.5281/zenodo.10203082
https://doi.org/10.1145/3437801.3441625
https://doi.org/10.1109/TPDS.2023.3335671
https://doi.org/10.1109/TPDS.2023.3335671
https://en.wikipedia.org/w/index.php?title=ABA_problem&oldid=1166964304
https://en.wikipedia.org/w/index.php?title=ABA_problem&oldid=1166964304
https://en.wikipedia.org/w/index.php?title=Multiple_buffering&oldid=1164687618
https://en.wikipedia.org/w/index.php?title=Multiple_buffering&oldid=1164687618

SPAA 2024, June 17–21, 2024, Nantes, France. Jeonghyeon Kim, Jaehwang Jung, and Jeehoon Kang

A SAFETY PROOF
We review the proof of the hazard pointer’s safety (Appendix A.1), and prove BRCU’s correctness (Appendix A.2) and HP-BRCU’s safety
(Appendix A.3) stated in §5. We first present our assumption on the underlying concurrency model.

Assumption 1 (Concurrency Model). We assume the underlying concurrency model satisfies the following properties:

• the model has the concept of happens-before relation (denoted by
hb→) that is a partial order on events;

• for a matching pair of release write, say𝑤 , and acquire read, say 𝑟 , we have𝑤
hb→ 𝑟 ;

• For a pair of SC fence invocations, say 𝑎 and 𝑏, we have either 𝑎
hb→ 𝑏 or 𝑏

hb→ 𝑎; and
• If a thread, say 𝑎, sends a signal to another thread, say 𝑏, then we have:

[𝑏’s suspension due to signal delivery]
hb→ [𝑎’s return from signaling system call] .

Our proof in this section works as far as the underlying concurrency model satisfies Assumption 1, which is indeed satisfied by a wide class
of models including the C/C++ model [28], Armv8/RISC-V model [41], and x86-TSO model [39] when combined with the POSIX model of
signals.

hb?→ stands for the reflexive closure of
hb→.

A.1 Hazard Pointers
Let 𝑝’s unprotection be the event that removes 𝑝 from shield, and 𝑝’s shield scan be the event that the shields are scanned for 𝑝’s reclamation
at line 14 in Algorithm 1.

Lemma A.1. Suppose a pointer, say 𝑝 , is retired and then reclaimed in hazard pointers. If [𝑝’s protection
hb→ 𝑝’s dereference

hb→ 𝑝’s unprotection]

and [𝑝’s protection
hb→ 𝑝’s shield scan], then [𝑝’s dereference

hb→ 𝑝’s reclamation] (i.e., 𝑝 does not incur use-after-free).

Proof. We label the events of 𝑝’s protection- and reclamation-related events as follows:
• 𝑃1: 𝑝’s protection
• 𝑃2: 𝑝’s dereference
• 𝑃3: 𝑝’s unprotection
• 𝑅1: 𝑝’s shield scan (line 14)
• 𝑅2: 𝑝’s reclamation (line 14)

Here, we have 𝑃1
hb→ 𝑃2

hb→ 𝑃3 and 𝑃1
hb→ 𝑅1

hb→ 𝑅2. For 𝑅2 to pass its check, we have 𝑃2
hb→ 𝑃3

hb→ 𝑅1
hb→ 𝑅2, from which the conclusion is

immediate. □

Theorem A.2 (Hazard Pointer’s Safety of Validation). Suppose a pointer, say 𝑝 , is retired and then reclaimed in hazard pointers.

If [𝑝’s protection
hb→ SC fence

hb→ 𝑝’s validation
hb→ 𝑝’s dereference

hb→ 𝑝’s unprotection] and [𝑝’s retirement
hb
↛ 𝑝’s validation] (i.e., 𝑝’s

reachability is validated), then [𝑝’s dereference
hb→ 𝑝’s reclamation].

Proof. We label the events of 𝑝’s protection- and reclamation-related events as follows:
• 𝑃1: 𝑝’s protection (e.g., line 7 in Algorithm 1)
• 𝑃2: SC fence (e.g., line 7)
• 𝑃3: 𝑝’s validation (e.g., line 9)
• 𝑅1: 𝑝’s retirement
• 𝑅2: SC fence in Reclaim (line 13)
• 𝑅3: 𝑝’s shield scan (line 14)

Here, we have 𝑃1
hb→ 𝑃2

hb→ 𝑃3 and 𝑅1
hb→ 𝑅2

hb→ 𝑅3.
By the strict ordering of SC fences, we have either 𝑃2

hb→ 𝑅2 or 𝑅2
hb→ 𝑃2. For the latter case, we have 𝑅1

hb→ 𝑅2
hb→ 𝑃2

hb→ 𝑃3, contradicting

the assumption. For the former case, we have 𝑃1
hb→ 𝑃2

hb→ 𝑅2
hb→ 𝑅3. From Lemma A.1, the conclusion is immediate. □

Theorem A.3 (Hazard Pointer’s Safety of Early Protection). Suppose a pointer, say 𝑝 , is retired and then reclaimed in hazard pointers.

If [𝑝’s protection
hb→ 𝑝’s dereference

hb→ 𝑝’s unprotection] and [𝑝’s protection
hb→ 𝑝’s retirement], then [𝑝’s dereference

hb→ 𝑝’s reclamation].

Proof. By Lemma A.1. □

Theorem A.2 and Theorem A.3 collectively mean hazard pointer’s safety: If every pointer is properly protected according to these
theorems, then data structure does not incur use-after-free error.

Expediting Hazard Pointers with Bounded RCU Critical Sections SPAA 2024, June 17–21, 2024, Nantes, France.

A.2 Bounded RCU
Theorem A.4 (BRCU’s Correctness, Restatement of Theorem 5.1). Suppose that a task is scheduled and defer-executed. We say these

events are 𝑒𝑠 and 𝑒𝑥 , respectively. Then for every critical section, whose start and end events are 𝑒𝑓 and 𝑒𝑡 , we have either 𝑒𝑠
hb→ 𝑒𝑓 or 𝑒𝑡

hb→ 𝑒𝑥 .

Proof. Let 𝑇 be the thread that executes the critical section. We first label the events of the beginning of 𝑇 ’s critical section as follows:
• 𝐹1: Load, say E𝑓 , from the global epoch (line 16 in Algorithm 5)
• 𝐹2: Store E𝑓 to the local epoch (line 16)
• 𝐹3 (= 𝑒𝑓): Issue SC fence (line 16)
We then label the events of the scheduling event 𝑒𝑠 of a task as follows:
• 𝑆1 (= 𝑒𝑠): Issue the first SC fence (line 25)
• 𝑆2: Load, say E𝑠 , from the global epoch (line 25)
• 𝑆3: Issue the second SC fence (line 25)

By the strict ordering of SC fences, we have either 𝐹3
hb→ 𝑆1 or 𝑆1

hb→ 𝐹3. For the latter case, we have 𝑒𝑠 = 𝑆1
hb→ 𝐹3 = 𝑒𝑓 , from which the

conclusion is immediate. For the former case, we have 𝐹1
hb→ 𝐹3

hb→ 𝑆1
hb→ 𝑆2. From the coherence and the monotonicity of the global epoch

(only updated by CAS), we have E𝑓 ≤ E𝑠 .
We then label the events of the Defer invocation that executes the scheduled task as follows:
• 𝑋1: Issue the first SC fence (line 25)
• 𝑋2: Load E𝑠 + 1 from the global epoch (line 25)
• 𝑋3: Issue the second SC fence (line 25)
• 𝑋4: Load, say E𝑇 , from 𝑇 ’s local epoch (line 29)
• 𝑋5: Send signal to 𝑇 is the conditions are met (line 32)
• 𝑋6: Perform CAS on the global epoch from E𝑠 + 1 to E𝑠 + 2 (line 33)
• 𝑋7 (= 𝑒𝑥): Execute those tasks deferred at E𝑠 (line 34)

By the strict ordering of SC fences, we have either 𝑆1
hb→ 𝑋3 or 𝑋3

hb→ 𝑆1. For the latter case, we have 𝑋2
hb→ 𝑋3

hb→ 𝑆1
hb→ 𝑆2. From

the coherence and the monotonicity of the global epoch, we have E𝑠 + 1 ≤ E𝑠 , which is a contradiction. For the former case, we have

𝐹2
hb→ 𝐹3

hb→ 𝑆1
hb→ 𝑋3

hb→ 𝑋4. From the coherence of the local epoch, we have either E𝑓 ≤ E𝑇 or E𝑇 is unpinned. We prove 𝑒𝑡
hb→ 𝑋7 = 𝑒𝑥 by

a case analysis on the value of E𝑇 , from which the conclusion is immediate.

• If E𝑇 is unpinned, we have 𝑒𝑡
hb→ 𝑋4 from release-acquire synchronization. Then we have 𝑒𝑡

hb→ 𝑋4
hb→ 𝑋5 = 𝑒𝑥 .

• If E𝑇 ≤ E𝑠 , then 𝑇 must have been signaled at 𝑋5. From Assumption 1, we have 𝑒𝑡
hb→ 𝑋7 = 𝑒𝑥 .

• If E𝑇 > E𝑠 , we have E𝑓 ≤ E𝑠 < E𝑇 . Then we have 𝑒𝑡
hb→ [storing E𝑇 to 𝑇 ’s local epoch] hb→ 𝑋4

hb→ 𝑋7 = 𝑒𝑥 .
□

A.3 HP-BRCU
Lemma A.5 (Reachability inside CriticalSection). Suppose an HP-BRCU’s CriticalSection invocation reaches a node, say 𝑞, inside its

body, and the critical section’s start and end events are 𝑒𝑓 and 𝑒𝑡 , respectively. Then𝑞 is not HP-BRCU-retired before 𝑒𝑓 , or [𝑞’s HP-BRCU-retirement]
hb
↛

𝑒𝑓 in short.

Proof. We prove by induction on the length of the traversal to 𝑞 inside the critical section.
For the base case, assume that 𝑞 is the first node to traverse inside the critical section. If 𝑞 was traversed from data structure en-

try points, then the conclusion is immediate. Otherwise, 𝑞 was traversed from a local pointer, say 𝑝 , protected before 𝑒𝑓 . We have

[𝑝’s HP-BRCU-retirement]
hb
↛ 𝑒𝑓 by the assumption on 𝑝 . If [𝑞’s HP-BRCU-retirement]

hb→ 𝑒𝑓 , from the link from 𝑝 to 𝑞 retrieved after 𝑒𝑓 ,

we have [𝑝’s HP-BRCU-retirement]
hb?→ [𝑞’s HP-BRCU-retirement]

hb→ 𝑒𝑓 , contradicting the assumption.
For the inductive case, assume that the traversal to 𝑞 first traverses to 𝑝 and then follows a link from 𝑝 to 𝑞. By induction hypothesis, we

may further assume that [𝑝’s HP-BRCU-retirement]
hb
↛ 𝑒𝑓 . If [𝑞’s HP-BRCU-retirement]

hb→ 𝑒𝑓 , from the link from 𝑝 to 𝑞 retrieved after 𝑒𝑓 ,

we have [𝑝’s HP-BRCU-retirement]
hb?→ [𝑞’s HP-BRCU-retirement]

hb→ 𝑒𝑓 , contradicting the assumption. □

Corollary A.6 (No Retired Nodes inside CriticalSection). Suppose an HP-BRCU’s CriticalSection invocation reaches a node, say 𝑞,

inside its body, and the critical section’s start and end events are 𝑒𝑓 and 𝑒𝑡 , respectively. If 𝑞 is HP-retired, then we have 𝑒𝑡
hb→ [𝑞’s HP-retirement].

SPAA 2024, June 17–21, 2024, Nantes, France. Jeonghyeon Kim, Jaehwang Jung, and Jeehoon Kang

Proof. From Theorem A.4, we have either ([𝑞’s HP-BRCU-retirement]
hb→ 𝑒𝑓) or (𝑒𝑡

hb→ [𝑞’s HP-retirement]). For the former case, from

Lemma A.5, we have [𝑞’s HP-BRCU-retirement]
hb
↛ 𝑒𝑓 , which is a contradiction. For the latter case, the conclusion is immediate. □

Theorem A.7 (HP-BRCU Safety of Dereference in Critical Section). Suppose HP-BRCU’s requirements R1, R2, R3 are met; and a

pointer, say 𝑝 , is retired and then reclaimed in HP-BRCU. If a 𝑝’ dereference in a BRCU critical section, then [𝑝’s dereference
hb→ 𝑝’s reclamation].

Proof. Let 𝑒𝑓 and 𝑒𝑡 be the start and end events of the critical section, respectively. From the assumption that 𝑝 is reached in the critical
section and Corollary A.6, we have:

𝑝’s dereference
hb→ 𝑒𝑡

hb→ 𝑝’s HP-retirement
hb→ 𝑝’s reclamation .

□

Theorem A.8 (HP-BRCU Safety of Protection in Critical Section). Suppose HP-BRCU’s requirements R1, R2, R3 are met; and a

pointer, say 𝑝 , is retired and then reclaimed in HP-BRCU. If [𝑝’s protection
hb→ 𝑝’s dereference

hb→ 𝑝’s unprotection] and 𝑝’s protection is in a

BRCU critical section, then [𝑝’s dereference
hb→ 𝑝’s reclamation].

Proof. Let 𝑒𝑓 and 𝑒𝑡 be the start and end events of the critical section, respectively. From the assumption that 𝑝 is later dereferenced, 𝑝 is

successfully protected during critical section, so we have [𝑝’s protection]
hb→ 𝑒𝑡 . From the assumption that 𝑝 is reached in the critical section

and Corollary A.6, we have 𝑒𝑡
hb→ [𝑝’s HP-retirement]. From above and Theorem A.3, the conclusion is immediate. □

Theorem A.2, Theorem A.3, Theorem A.7, and Theorem A.8 collectively mean HP-BRCU’s safety (Theorem 5.2): If every pointer is
properly protected according to these theorems, then data structure does not incur use-after-free error.

Expediting Hazard Pointers with Bounded RCU Critical Sections SPAA 2024, June 17–21, 2024, Nantes, France.

B AMD64T FULL EXPERIMENTAL RESULTS
B.1 Small Key Ranges (1K for Lists and 100K for Others)
B.1.1 Write-only Workloads.

NR RCU HP HP++ HP-RCU HP-BRCU PEBR NBR NBR-Large VBR

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Th
ro

ug
hp

ut
 (M

 o
p/

s)
HList/HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

2

4

6

8

10

12

14

16

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HMList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

25

50

75

100

125

150

175

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

20

40

60

80

Th
ro

ug
hp

ut
 (M

 o
p/

s)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

10

20

30

40

50

60

70

Th
ro

ug
hp

ut
 (M

 o
p/

s)

SkipList

Figure 8: Throughput (million operations per second) of write-only workloads for a varying number of threads.

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

1

2

3

4

5

6

7

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

HList/HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

1

2

3

4

5

6

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

HMList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

2

4

6

8

10

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

SkipList

Figure 9: Peak number of unreclaimed blocks of write-only workloads for a varying number of threads.

SPAA 2024, June 17–21, 2024, Nantes, France. Jeonghyeon Kim, Jaehwang Jung, and Jeehoon Kang

B.1.2 Read-write Workloads.

NR RCU HP HP++ HP-RCU HP-BRCU PEBR NBR NBR-Large VBR

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

5

10

15

20

25

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

5

10

15

20

25

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HMList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

5

10

15

20

25

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

50

100

150

200

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

20

40

60

80

100

Th
ro

ug
hp

ut
 (M

 o
p/

s)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

20

40

60

80

Th
ro

ug
hp

ut
 (M

 o
p/

s)

SkipList

Figure 10: Throughput (million operations per second) of read-write workloads for a varying number of threads.

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

1

2

3

4

5

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

HList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

1

2

3

4

5

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

HMList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

1

2

3

4

5

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

2

4

6

8

10

12

14

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

2

4

6

8

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

SkipList

Figure 11: Peak number of unreclaimed blocks of read-write workloads for a varying number of threads.

Expediting Hazard Pointers with Bounded RCU Critical Sections SPAA 2024, June 17–21, 2024, Nantes, France.

B.1.3 Read-intensive Workloads.

NR RCU HP HP++ HP-RCU HP-BRCU PEBR NBR NBR-Large VBR

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

10

20

30

40

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

10

20

30

40

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HMList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

10

20

30

40

50

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

50

100

150

200

250

300

350

400

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

20

40

60

80

100

120

140

160

Th
ro

ug
hp

ut
 (M

 o
p/

s)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

20

40

60

80

100

120

Th
ro

ug
hp

ut
 (M

 o
p/

s)

SkipList

Figure 12: Throughput (million operations per second) of read-intensive workloads for a varying number of threads.

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

HList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

HMList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

2

4

6

8

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

1

2

3

4

5

6

7

8

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

1

2

3

4

5

6

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

SkipList

Figure 13: Peak number of unreclaimed blocks of read-intensive workloads for a varying number of threads.

SPAA 2024, June 17–21, 2024, Nantes, France. Jeonghyeon Kim, Jaehwang Jung, and Jeehoon Kang

B.1.4 Read-only Workloads.

NR RCU HP HP++ HP-RCU HP-BRCU PEBR NBR NBR-Large VBR

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

50

100

150

200

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HHSList
1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

100

200

300

400

500

600

700

Th
ro

ug
hp

ut
 (M

 o
p/

s)
HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

50

100

150

200

Th
ro

ug
hp

ut
 (M

 o
p/

s)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

50

100

150

200

Th
ro

ug
hp

ut
 (M

 o
p/

s)

SkipList

Figure 14: Throughput (million operations per second) of read-only workloads for a varying number of threads.

Expediting Hazard Pointers with Bounded RCU Critical Sections SPAA 2024, June 17–21, 2024, Nantes, France.

B.2 Large Key Ranges (10K for Lists and 100M for Others)
B.2.1 Write-only Workloads.

NR RCU HP HP++ HP-RCU HP-BRCU PEBR NBR NBR-Large VBR

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Th
ro

ug
hp

ut
 (M

 o
p/

s)
HList/HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HMList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

5

10

15

20

25

Th
ro

ug
hp

ut
 (M

 o
p/

s)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Th
ro

ug
hp

ut
 (M

 o
p/

s)

SkipList

Figure 15: Throughput (million operations per second) of write-only workloads for a varying number of threads.

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

HList/HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

HMList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

2

4

6

8

10

12

14

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

1

2

3

4

5

6

7

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

SkipList

Figure 16: Peak number of unreclaimed blocks of write-only workloads for a varying number of threads.

SPAA 2024, June 17–21, 2024, Nantes, France. Jeonghyeon Kim, Jaehwang Jung, and Jeehoon Kang

B.2.2 Read-write Workloads.

NR RCU HP HP++ HP-RCU HP-BRCU PEBR NBR NBR-Large VBR

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HMList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

5

10

15

20

25

Th
ro

ug
hp

ut
 (M

 o
p/

s)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Th
ro

ug
hp

ut
 (M

 o
p/

s)

SkipList

Figure 17: Throughput (million operations per second) of read-write workloads for a varying number of threads.

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

HList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

HMList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

1

2

3

4

5

6

7

8

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

1

2

3

4

5

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

SkipList

Figure 18: Peak number of unreclaimed blocks of read-write workloads for a varying number of threads.

Expediting Hazard Pointers with Bounded RCU Critical Sections SPAA 2024, June 17–21, 2024, Nantes, France.

B.2.3 Read-intensive Workloads.

NR RCU HP HP++ HP-RCU HP-BRCU PEBR NBR NBR-Large VBR

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HMList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

5

10

15

20

25

30

Th
ro

ug
hp

ut
 (M

 o
p/

s)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

5

10

15

20

Th
ro

ug
hp

ut
 (M

 o
p/

s)

SkipList

Figure 19: Throughput (million operations per second) of read-intensive workloads for a varying number of threads.

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

HList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

0.2

0.4

0.6

0.8

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

HMList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

HHSList

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

1

2

3

4

5

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

0.5

1.0

1.5

2.0

2.5

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

SkipList

Figure 20: Peak number of unreclaimed blocks of read-intensive workloads for a varying number of threads.

SPAA 2024, June 17–21, 2024, Nantes, France. Jeonghyeon Kim, Jaehwang Jung, and Jeehoon Kang

B.2.4 Read-only Workloads.

NR RCU HP HP++ HP-RCU HP-BRCU PEBR NBR NBR-Large VBR

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

5

10

15

20

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HHSList
1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Th
ro

ug
hp

ut
 (M

 o
p/

s)
HashMap

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

5

10

15

20

25

30

Th
ro

ug
hp

ut
 (M

 o
p/

s)

NMTree

1 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

Threads

0

5

10

15

20

Th
ro

ug
hp

ut
 (M

 o
p/

s)

SkipList

Figure 21: Throughput (million operations per second) of read-only workloads for a varying number of threads.

Expediting Hazard Pointers with Bounded RCU Critical Sections SPAA 2024, June 17–21, 2024, Nantes, France.

B.3 Long-Running Operations

NR RCU HP HP++ HP-RCU HP-BRCU PEBR NBR NBR-Large VBR

218 219 220 221 222 223 224 225 226 227 228 229

Key range

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Th
ro

ug
hp

ut
 ra

tio
 to

 N
R

218 219 220 221 222 223 224 225 226 227 228 229

Key range

0

1000

2000

3000

4000

5000

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0³

)

218 219 220 221 222 223 224 225 226 227 228 229

Key range
0

5

10

15

20

25

30

35

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0³

)

Figure 22: Throughput (million operations per second) and peak number of unreclaimed blocks of long-running read operations.

SPAA 2024, June 17–21, 2024, Nantes, France. Jeonghyeon Kim, Jaehwang Jung, and Jeehoon Kang

C INTEL96T FULL EXPERIMENTAL RESULTS
C.1 Small Key Ranges (1K for Lists and 100K for Others)
C.1.1 Write-only Workloads.

NR RCU HP HP++ HP-RCU HP-BRCU PEBR NBR NBR-Large VBR

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

5

10

15

20

25
Th

ro
ug

hp
ut

 (M
 o

p/
s)

HList/HHSList

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HMList

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

50

100

150

200

250

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HashMap

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

20

40

60

80

100

120

Th
ro

ug
hp

ut
 (M

 o
p/

s)

NMTree

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

10

20

30

40

50

60

70

80

Th
ro

ug
hp

ut
 (M

 o
p/

s)

SkipList

Figure 23: Throughput (million operations per second) of write-only workloads for a varying number of threads.

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

2

4

6

8

10

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

HList/HHSList

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

1

2

3

4

5

6

7

8

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

HMList

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

5

10

15

20

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

HashMap

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

5

10

15

20

25

30

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

NMTree

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

SkipList

Figure 24: Peak number of unreclaimed blocks of write-only workloads for a varying number of threads.

Expediting Hazard Pointers with Bounded RCU Critical Sections SPAA 2024, June 17–21, 2024, Nantes, France.

C.1.2 Read-write Workloads.

NR RCU HP HP++ HP-RCU HP-BRCU PEBR NBR NBR-Large VBR

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

5

10

15

20

25

30

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HList

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

5

10

15

20

25

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HMList

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

5

10

15

20

25

30

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HHSList

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

50

100

150

200

250

300

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HashMap

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

20

40

60

80

100

120

140

Th
ro

ug
hp

ut
 (M

 o
p/

s)

NMTree

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

20

40

60

80

100

Th
ro

ug
hp

ut
 (M

 o
p/

s)

SkipList

Figure 25: Throughput (million operations per second) of read-write workloads for a varying number of threads.

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

2

4

6

8

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

HList

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

1

2

3

4

5

6

7

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

HMList

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

1

2

3

4

5

6

7

8

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

HHSList

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

HashMap

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

5

10

15

20

25

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

NMTree

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

2

4

6

8

10

12

14

16

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

SkipList

Figure 26: Peak number of unreclaimed blocks of read-write workloads for a varying number of threads.

SPAA 2024, June 17–21, 2024, Nantes, France. Jeonghyeon Kim, Jaehwang Jung, and Jeehoon Kang

C.1.3 Read-intensive Workloads.

NR RCU HP HP++ HP-RCU HP-BRCU PEBR NBR NBR-Large VBR

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

10

20

30

40

50

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HList

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

10

20

30

40

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HMList

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

10

20

30

40

50

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HHSList

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

100

200

300

400

500

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HashMap

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

25

50

75

100

125

150

175

200

Th
ro

ug
hp

ut
 (M

 o
p/

s)

NMTree

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

20

40

60

80

100

120

140

160

Th
ro

ug
hp

ut
 (M

 o
p/

s)

SkipList

Figure 27: Throughput (million operations per second) of read-intensive workloads for a varying number of threads.

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

1

2

3

4

5

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

HList

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

1

2

3

4

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

HMList

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

1

2

3

4

5

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

HHSList

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

2

4

6

8

10

12

14

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

HashMap

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

2

4

6

8

10

12

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

NMTree

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

2

4

6

8

10

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

SkipList

Figure 28: Peak number of unreclaimed blocks of read-intensive workloads for a varying number of threads.

Expediting Hazard Pointers with Bounded RCU Critical Sections SPAA 2024, June 17–21, 2024, Nantes, France.

C.1.4 Read-only Workloads.

NR RCU HP HP++ HP-RCU HP-BRCU PEBR NBR NBR-Large VBR

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

50

100

150

200

250

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HHSList
1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

200

400

600

800

Th
ro

ug
hp

ut
 (M

 o
p/

s)
HashMap

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

50

100

150

200

250

Th
ro

ug
hp

ut
 (M

 o
p/

s)

NMTree

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

50

100

150

200

Th
ro

ug
hp

ut
 (M

 o
p/

s)

SkipList

Figure 29: Throughput (million operations per second) of read-only workloads for a varying number of threads.

SPAA 2024, June 17–21, 2024, Nantes, France. Jeonghyeon Kim, Jaehwang Jung, and Jeehoon Kang

C.2 Large Key Ranges (10K for Lists and 100M for Others)
C.2.1 Write-only Workloads.

NR RCU HP HP++ HP-RCU HP-BRCU PEBR NBR NBR-Large VBR

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

1

2

3

4

5
Th

ro
ug

hp
ut

 (M
 o

p/
s)

HList/HHSList

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

1

2

3

4

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HMList

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HashMap

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

5

10

15

20

25

30

Th
ro

ug
hp

ut
 (M

 o
p/

s)

NMTree

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Th
ro

ug
hp

ut
 (M

 o
p/

s)

SkipList

Figure 30: Throughput (million operations per second) of write-only workloads for a varying number of threads.

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

1

2

3

4

5

6

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

HList/HHSList

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

1

2

3

4

5

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

HMList

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

1

2

3

4

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

HashMap

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

NMTree

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

2

4

6

8

10

12

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

SkipList

Figure 31: Peak number of unreclaimed blocks of write-only workloads for a varying number of threads.

Expediting Hazard Pointers with Bounded RCU Critical Sections SPAA 2024, June 17–21, 2024, Nantes, France.

C.2.2 Read-write Workloads.

NR RCU HP HP++ HP-RCU HP-BRCU PEBR NBR NBR-Large VBR

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

1

2

3

4

5

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HList

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

1

2

3

4

5

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HMList

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

1

2

3

4

5

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HHSList

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HashMap

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

5

10

15

20

25

30

Th
ro

ug
hp

ut
 (M

 o
p/

s)

NMTree

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Th
ro

ug
hp

ut
 (M

 o
p/

s)

SkipList

Figure 32: Throughput (million operations per second) of read-write workloads for a varying number of threads.

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

1

2

3

4

5

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

HList

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

HMList

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

1

2

3

4

5

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

HHSList

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

1

2

3

4

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

HashMap

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

2

4

6

8

10

12

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

NMTree

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

2

4

6

8

10

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

SkipList

Figure 33: Peak number of unreclaimed blocks of read-write workloads for a varying number of threads.

SPAA 2024, June 17–21, 2024, Nantes, France. Jeonghyeon Kim, Jaehwang Jung, and Jeehoon Kang

C.2.3 Read-intensive Workloads.

NR RCU HP HP++ HP-RCU HP-BRCU PEBR NBR NBR-Large VBR

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

1

2

3

4

5

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HList

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

1

2

3

4

5

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HMList

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

1

2

3

4

5

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HHSList

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HashMap

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

5

10

15

20

25

30

35

Th
ro

ug
hp

ut
 (M

 o
p/

s)

NMTree

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

5

10

15

20

Th
ro

ug
hp

ut
 (M

 o
p/

s)

SkipList

Figure 34: Throughput (million operations per second) of read-intensive workloads for a varying number of threads.

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

1

2

3

4

5

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

HList

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

HMList

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

1

2

3

4

5

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

HHSList

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

1

2

3

4

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

HashMap

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

1

2

3

4

5

6

7

8

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

NMTree

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

1

2

3

4

5

6

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0⁴

)

SkipList

Figure 35: Peak number of unreclaimed blocks of read-intensive workloads for a varying number of threads.

Expediting Hazard Pointers with Bounded RCU Critical Sections SPAA 2024, June 17–21, 2024, Nantes, France.

C.2.4 Read-only Workloads.

NR RCU HP HP++ HP-RCU HP-BRCU PEBR NBR NBR-Large VBR

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

5

10

15

20

25

Th
ro

ug
hp

ut
 (M

 o
p/

s)

HHSList
1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 (M

 o
p/

s)
HashMap

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

5

10

15

20

25

30

35

Th
ro

ug
hp

ut
 (M

 o
p/

s)

NMTree

1 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

Threads

0

5

10

15

20

Th
ro

ug
hp

ut
 (M

 o
p/

s)

SkipList

Figure 36: Throughput (million operations per second) of read-only workloads for a varying number of threads.

SPAA 2024, June 17–21, 2024, Nantes, France. Jeonghyeon Kim, Jaehwang Jung, and Jeehoon Kang

C.3 Long-Running Operations

NR RCU HP HP++ HP-RCU HP-BRCU PEBR NBR NBR-Large VBR

218 219 220 221 222 223 224 225 226 227 228 229

Key range

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Th
ro

ug
hp

ut
 ra

tio
 to

 N
R

218 219 220 221 222 223 224 225 226 227 228 229

Key range

0

1000

2000

3000

4000

5000

6000

7000

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0³

)

218 219 220 221 222 223 224 225 226 227 228 229

Key range

0

20

40

60

80

100

Pe
ak

 u
nr

ec
la

im
ed

 b
lo

ck
s (

×1
0³

)

Figure 37: Throughput (million operations per second) and peak number of unreclaimed blocks of long-running read operations.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Hazard Pointers
	2.2 Epoch-Based RCU
	2.3 Signal-Based Rollback

	3 HP-RCU: Optimizing Hazard Pointers with RCU Critical Sections
	3.1 RCU-Expedited Traversal
	3.2 Two-Step Retirement
	3.3 Revalidation

	4 HP-BRCU: Bounding Critical Sections
	4.1 Bounded RCU
	4.2 Abort-Masking
	4.3 Double Buffering

	5 Analysis
	6 Experiment
	7 Related Work
	Acknowledgments
	References
	A Safety Proof
	A.1 Hazard Pointers
	A.2 Bounded RCU
	A.3 HP-BRCU

	B AMD64T Full Experimental Results
	B.1 Small Key Ranges (1K for Lists and 100K for Others)
	B.2 Large Key Ranges (10K for Lists and 100M for Others)
	B.3 Long-Running Operations

	C Intel96T Full Experimental Results
	C.1 Small Key Ranges (1K for Lists and 100K for Others)
	C.2 Large Key Ranges (10K for Lists and 100M for Others)
	C.3 Long-Running Operations

